
MATLAB®

Programming Fundamentals

R2013a

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Programming Fundamentals

© COPYRIGHT 1984–2013 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
June 2004 First printing New for MATLAB 7.0 (Release 14)
October 2004 Online only Revised for MATLAB 7.0.1 (Release 14SP1)
March 2005 Online only Revised for MATLAB 7.0.4 (Release 14SP2)
June 2005 Second printing Minor revision for MATLAB 7.0.4
September 2005 Online only Revised for MATLAB 7.1 (Release 14SP3)
March 2006 Online only Revised for MATLAB 7.2 (Release 2006a)
September 2006 Online only Revised for MATLAB 7.3 (Release 2006b)
March 2007 Online only Revised for MATLAB 7.4 (Release 2007a)
September 2007 Online only Revised for Version 7.5 (Release 2007b)
March 2008 Online only Revised for Version 7.6 (Release 2008a)
October 2008 Online only Revised for Version 7.7 (Release 2008b)
March 2009 Online only Revised for Version 7.8 (Release 2009a)
September 2009 Online only Revised for Version 7.9 (Release 2009b)
March 2010 Online only Revised for Version 7.10 (Release 2010a)
September 2010 Online only Revised for Version 7.11 (Release 2010b)
April 2011 Online only Revised for Version 7.12 (Release 2011a)
September 2011 Online only Revised for Version 7.13 (Release 2011b)
March 2012 Online only Revised for Version 7.14 (Release 2012a)
September 2012 Online only Revised for Version 8.0 (Release 2012b)
March 2013 Online only Revised for Version 8.1 (Release 2013a)

Contents

Language

Syntax Basics

1
Create Variables . 1-2

Create Numeric Arrays . 1-3

Continue Long Statements on Multiple Lines 1-5

Call Functions . 1-6

Ignore Function Outputs . 1-7

Variable Names . 1-8
Valid Names . 1-8
Conflicts with Function Names . 1-8

Case and Space Sensitivity . 1-10

Command vs. Function Syntax . 1-12
Command and Function Syntaxes . 1-12
Avoid Common Syntax Mistakes . 1-13
How MATLAB Recognizes Command Syntax 1-14

Common Errors When Calling Functions 1-16
Conflicting Function and Variable Names 1-16
Undefined Functions or Variables . 1-16

v

Program Components

2
Operators . 2-2
Arithmetic Operators . 2-2
Relational Operators . 2-3
Logical Operators . 2-4
Operator Precedence . 2-11

Special Values . 2-13

Conditional Statements . 2-15

Loop Control Statements . 2-17

Represent Dates and Times in MATLAB 2-19
Date Strings . 2-19
Date Vectors . 2-20
Serial Date Numbers . 2-20

Compute Elapsed Time . 2-21
Compute Elapsed Time . 2-21
Compute Future Date . 2-22

Carryover in Date Vectors and Strings 2-24

Troubleshooting: Converting Date Vector Returns
Unexpected Output . 2-25

Regular Expressions . 2-26
What Is a Regular Expression? . 2-26
Steps for Building Expressions . 2-28
Operators and Characters . 2-31

Lookahead Assertions in Regular Expressions 2-43
Lookahead Assertions . 2-43
Overlapping Matches . 2-44
Logical AND Conditions . 2-44

vi Contents

Tokens in Regular Expressions . 2-46
Introduction . 2-46
Multiple Tokens . 2-48
Unmatched Tokens . 2-48
Tokens in Replacement Strings . 2-50
Named Capture . 2-50

Dynamic Regular Expressions . 2-52
Introduction . 2-52
Dynamic Match Expressions — (??expr) 2-53
Commands That Modify the Match Expression —
(??@cmd) . 2-54

Commands That Serve a Functional Purpose — (?@cmd) . . 2-55
Commands in Replacement Expressions — ${cmd} 2-58

Comma-Separated Lists . 2-61
What Is a Comma-Separated List? 2-61
Generating a Comma-Separated List 2-61
Assigning Output from a Comma-Separated List 2-63
Assigning to a Comma-Separated List 2-64
How to Use the Comma-Separated Lists 2-65
Fast Fourier Transform Example . 2-67

Alternatives to the eval Function 2-69
Why Avoid the eval Function? . 2-69
Variables with Sequential Names . 2-69
Files with Sequential Names . 2-70
Function Names in Variables . 2-71
Field Names in Variables . 2-72
Error Handling . 2-72

Shell Escape Functions . 2-73

Symbol Reference . 2-74
Asterisk — * . 2-74
At — @ . 2-75
Colon — : . 2-76
Comma — , . 2-77
Curly Braces — { } . 2-78
Dot — . 2-78
Dot-Dot — .. 2-79
Dot-Dot-Dot (Ellipsis) — ... 2-79

vii

Dot-Parentheses — .() . 2-80
Exclamation Point — ! . 2-81
Parentheses — () . 2-81
Percent — % . 2-82
Percent-Brace — %{ %} . 2-82
Plus — + . 2-83
Semicolon — ; . 2-83
Single Quotes — ’ ’ . 2-84
Space Character . 2-84
Slash and Backslash — / \ . 2-85
Square Brackets — [] . 2-85
Tilde — ~ . 2-86

Classes (Data Types)

Overview of MATLAB Classes

3
Fundamental MATLAB Classes . 3-2

Numeric Classes

4
Overview of Numeric Classes . 4-2

Integers . 4-3
Integer Classes . 4-3
Creating Integer Data . 4-4
Arithmetic Operations on Integer Classes 4-5
Largest and Smallest Values for Integer Classes 4-6
Integer Functions . 4-6

Floating-Point Numbers . 4-7
Double-Precision Floating Point . 4-7
Single-Precision Floating Point . 4-8
Creating Floating-Point Data . 4-8

viii Contents

Arithmetic Operations on Floating-Point Numbers 4-10
Largest and Smallest Values for Floating-Point Classes . . 4-11
Accuracy of Floating-Point Data . 4-12
Avoiding Common Problems with Floating-Point
Arithmetic . 4-14

Floating-Point Functions . 4-16
References . 4-16

Complex Numbers . 4-18
Creating Complex Numbers . 4-18
Complex Number Functions . 4-19

Infinity and NaN . 4-20
Infinity . 4-20
NaN . 4-20
Infinity and NaN Functions . 4-21

Identifying Numeric Classes . 4-22

Display Format for Numeric Values 4-23
Default Display . 4-23
Display Format Examples . 4-23
Setting Numeric Format in a Program 4-24

Function Summary . 4-26

The Logical Class

5
Overview of the Logical Class . 5-2

Identifying Logical Arrays . 5-4
Function Summary . 5-4
Examples of Identifying Logical Arrays 5-4

Functions that Return a Logical Result 5-6
Overview . 5-6

ix

Examples of Functions that Return a Logical Result 5-6

Using Logical Arrays in Conditional Statements 5-9

Using Logical Arrays in Indexing 5-10

Characters and Strings

6
Creating Character Arrays . 6-2
Creating a Character String . 6-2
Creating a Rectangular Character Array 6-3
Identifying Characters in a String . 6-4
Working with Space Characters . 6-5
Expanding Character Arrays . 6-6

Cell Arrays of Strings . 6-7
Converting to a Cell Array of Strings 6-7
Functions for Cell Arrays of Strings 6-8

Formatting Strings . 6-10
Functions that Use Format Strings 6-10
The Format String . 6-11
Input Value Arguments . 6-12
The Formatting Operator . 6-13
Constructing the Formatting Operator 6-14
Setting Field Width and Precision . 6-20
Restrictions for Using Identifiers . 6-23

String Comparisons . 6-25
Comparing Strings for Equality . 6-25
Comparing for Equality Using Operators 6-26
Categorizing Characters Within a String 6-27

Searching and Replacing . 6-28

Converting from Numeric to String 6-30

x Contents

Function Summary . 6-30
Converting to a Character Equivalent 6-31
Converting to a String of Numbers 6-31
Converting to a Specific Radix . 6-31

Converting from String to Numeric 6-32
Function Summary . 6-32
Converting from a Character Equivalent 6-33
Converting from a Numeric String 6-33
Converting from a Specific Radix . 6-34

Function Summary . 6-35

Structures

7
Create a Structure Array . 7-2

Access Data in a Structure Array . 7-6

Concatenate Structures . 7-9

Generate Field Names from Variables 7-11

Access Data in Nested Structures 7-12

Access Elements of a Nonscalar Struct Array 7-14

Ways to Organize Data in Structure Arrays 7-16
Plane Organization . 7-16
Element-by-Element Organization 7-18

Memory Requirements for a Structure Array 7-20

xi

Cell Arrays

8
What Is a Cell Array? . 8-2

Create a Cell Array . 8-3

Access Data in a Cell Array . 8-5

Add Cells to a Cell Array . 8-8

Delete Data from a Cell Array . 8-9

Combine Cell Arrays . 8-10

Pass Contents of Cell Arrays to Functions 8-11

Preallocate Memory for a Cell Array 8-14

Cell vs. Struct Arrays . 8-15

Multilevel Indexing to Access Parts of Cells 8-17

Function Handles

9
What Is a Function Handle? . 9-2

Creating a Function Handle . 9-3
Maximum Length of a Function Name 9-4
The Role of Scope, Precedence, and Overloading When
Creating a Function Handle . 9-4

Obtaining Permissions from Class Methods 9-5
Using Function Handles for Anonymous Functions 9-6
Arrays of Function Handles . 9-6

xii Contents

Calling a Function Using Its Handle 9-7
Calling Syntax . 9-7
Calling a Function with Multiple Outputs 9-8
Returning a Handle for Use Outside of a Function File . . . 9-8
Example — Using Function Handles in Optimization 9-9

Preserving Data from the Workspace 9-10
Preserving Data with Anonymous Functions 9-10
Preserving Data with Nested Functions 9-11

Applications of Function Handles 9-13
Example of Passing a Function Handle 9-13
Pass a Function to Another Function 9-13
Capture Data Values For Later Use By a Function 9-15
Call Functions Outside of Their Normal Scope 9-18
Save the Handle in a MAT-File for Use in a Later MATLAB
Session . 9-18

Saving and Loading Function Handles 9-19
Invalid or Obsolete Function Handles 9-19

Advanced Operations on Function Handles 9-20
Examining a Function Handle . 9-20
Converting to and from a String . 9-21
Comparing Function Handles . 9-23

Functions That Operate on Function Handles 9-27

Map Containers

10
Overview of the Map Data Structure 10-2

Description of the Map Class . 10-4
Properties of the Map Class . 10-4
Methods of the Map Class . 10-5

xiii

Creating a Map Object . 10-6
Constructing an Empty Map Object 10-6
Constructing An Initialized Map Object 10-7
Combining Map Objects . 10-8

Examining the Contents of the Map 10-9

Reading and Writing Using a Key Index 10-11
Reading From the Map . 10-11
Adding Key/Value Pairs . 10-12
Building a Map with Concatenation 10-13

Modifying Keys and Values in the Map 10-15
Removing Keys and Values from the Map 10-15
Modifying Values . 10-15
Modifying Keys . 10-16
Modifying a Copy of the Map . 10-16

Mapping to Different Value Types 10-18
Mapping to a Structure Array . 10-18
Mapping to a Cell Array . 10-19

Combining Unlike Classes

11
Valid Combinations of Unlike Classes 11-2

Combining Unlike Integer Types . 11-3
Overview . 11-3
Example of Combining Unlike Integer Sizes 11-4
Example of Combining Signed with Unsigned 11-4

Combining Integer and Noninteger Data 11-6

Combining Cell Arrays with Non-Cell Arrays 11-7

Empty Matrices . 11-8

xiv Contents

Concatenation Examples . 11-9
Combining Single and Double Types 11-9
Combining Integer and Double Types 11-9
Combining Character and Double Types 11-10
Combining Logical and Double Types 11-10

Using Objects

12
MATLAB Objects . 12-2
Getting Oriented . 12-2
What Are Objects and Why Use Them? 12-2
Working with Objects . 12-3
Objects In the MATLAB Language 12-3
Other Kinds of Objects Used by MATLAB 12-4

General Purpose Vs. Specialized Arrays 12-5
How They Differ . 12-5
Using General-Purpose Data Structures 12-5
Using Specialized Objects . 12-6

Key Object Concepts . 12-8
Basic Concepts . 12-8
Classes Describe How to Create Objects 12-8
Properties Contain Data . 12-9
Methods Implement Operations . 12-9
Events are Notices Broadcast to Listening Objects 12-10

Creating Objects . 12-11
Class Constructor . 12-11
When to Use Package Names . 12-11

Accessing Object Data . 12-14
Listing Public Properties . 12-14
Getting Property Values . 12-14
Setting Property Values . 12-15

Calling Object Methods . 12-16

xv

What Operations Can You Perform 12-16
Method Syntax . 12-16
Class of Objects Returned by Methods 12-18

Desktop Tools Are Object Aware . 12-19
Tab Completion Works with Objects 12-19
Editing Objects with the Variable Editor 12-19

Getting Information About Objects 12-21
The Class of Workspace Variables . 12-21
Information About Class Members 12-23
Logical Tests for Objects . 12-23
Displaying Objects . 12-24
Getting Help for MATLAB Objects 12-25

Copying Objects . 12-26
Two Copy Behaviors . 12-26
Value Object Copy Behavior . 12-26
Handle Object Copy Behavior . 12-27
Testing for Handle or Value Class . 12-31

Destroying Objects . 12-33
Object Lifecycle . 12-33
Difference Between clear and delete 12-33

Defining Your Own Classes

13

Scripts and Functions

Scripts

14
Create Scripts . 14-2

xvi Contents

Add Comments to Programs . 14-4

Run Code Sections . 14-6
Divide Your File into Code Sections 14-6
Evaluate Code Sections . 14-7
Navigate Among Code Sections in a File 14-8
Example of Evaluating Code Sections 14-9
Change the Appearance of Code Sections 14-12
Use Code Sections with Control Statements and
Functions . 14-13

Scripts vs. Functions . 14-16

Function Basics

15
Create Functions in Files . 15-2

Add Help for Your Program . 15-5

Run Functions in the Editor . 15-7

Base and Function Workspaces . 15-9

Share Data Between Workspaces . 15-10
Introduction . 15-10
Best Practice: Passing Arguments . 15-10
Nested Functions . 15-11
Persistent Variables . 15-12
Global Variables . 15-12
Evaluating in Another Workspace . 15-13

Check Variable Scope in Editor . 15-15
Use Automatic Function and Variable Highlighting 15-15
Example of Using Automatic Function and Variable
Highlighting . 15-16

xvii

Types of Functions . 15-19
Local and Nested Functions in a File 15-19
Private Functions in a Subfolder . 15-20
Anonymous Functions Without a File 15-21

Anonymous Functions . 15-23
What Are Anonymous Functions? . 15-23
Variables in the Expression . 15-24
Multiple Anonymous Functions . 15-25
Functions with No Inputs . 15-26
Functions with Multiple Inputs or Outputs 15-26
Arrays of Anonymous Functions . 15-28

Local Functions . 15-30

Nested Functions . 15-32
What Are Nested Functions? . 15-32
Requirements for Nested Functions 15-33
Sharing Variables Between Parent and Nested
Functions . 15-33

Using Handles to Store Function Parameters 15-35
Visibility of Nested Functions . 15-37

Variables in Nested and Anonymous Functions 15-39

Private Functions . 15-41

Function Precedence Order . 15-43

Function Arguments

16
Find Number of Function Arguments 16-2

Support Variable Number of Inputs 16-4

Support Variable Number of Outputs 16-6

xviii Contents

Validate Number of Function Arguments 16-8

Argument Checking in Nested Functions 16-11

Ignore Function Inputs . 16-13

Check Function Inputs with validateattributes 16-14

Parse Function Inputs . 16-17

Input Parser Validation Functions 16-22

Debugging MATLAB Code

17
Debugging Process and Features . 17-2
Ways to Debug MATLAB Files . 17-2
Preparing for Debugging . 17-2
Set Breakpoints . 17-5
Run a File with Breakpoints . 17-8
Step Through a File . 17-10
Examine Values . 17-11
Correct Problems and End Debugging 17-17
Conditional Breakpoints . 17-24
Breakpoints in Anonymous Functions 17-26
Breakpoints in Methods That Overload Functions 17-27
Error Breakpoints . 17-28

Presenting MATLAB Code

18
Options for Presenting Your Code 18-2

Document and Share Code Using Examples 18-4

xix

Publishing MATLAB Code . 18-6

Publishing Markup . 18-8
Markup Overview . 18-8
Sections and Section Titles . 18-11
Text Formatting . 18-13
Bulleted and Numbered Lists . 18-14
Text and Code Blocks . 18-15
External Graphics . 18-16
Image Snapshot . 18-19
LaTeX Equations . 18-20
Hyperlinks . 18-22
HTML Markup . 18-25
LaTeX Markup . 18-26

Output Preferences for Publishing 18-29
How to Edit Publishing Options . 18-29
Specify Output File . 18-30
Run Code During Publishing . 18-31
Manipulate Graphics in Publishing Output 18-34
Save a Publish Setting . 18-38
Manage a Publish Configuration . 18-40

Create a MATLAB Notebook with Microsoft Word 18-44
Getting Started with MATLAB Notebooks 18-44
Creating and Evaluating Cells in a MATLAB Notebook . . 18-46
Formatting a MATLAB Notebook . 18-52
Tips for Using MATLAB Notebooks 18-55
Configuring the MATLAB Notebook Software 18-56

Coding and Productivity Tips

19
Open and Save Files . 19-2
Open Existing Files . 19-2
Save Files . 19-4

Check Code for Errors and Warnings 19-7

xx Contents

Automatically Check Code in the Editor — Code
Analyzer . 19-7

Create a Code Analyzer Message Report 19-12
Adjust Code Analyzer Message Indicators andMessages . . 19-13
Understand Code Containing Suppressed Messages 19-17
Understand the Limitations of Code Analysis 19-18
Enable MATLAB Compiler Deployment Messages 19-22

Improve Code Readability . 19-23
Indenting Code . 19-23
Right-Side Text Limit Indicator . 19-25
Code Folding — Expand and Collapse Code Constructs . . . 19-25

Find and Replace Text in Files . 19-30
Find Any Text in the Current File . 19-30
Find and Replace Functions or Variables in the Current
File . 19-30

Automatically Rename All Functions or Variables in a
File . 19-32

Find and Replace Any Text . 19-34
Find Text in Multiple File Names or Files 19-34
Function Alternative for Finding Text 19-34
Perform an Incremental Search in the Editor 19-34

Go To Location in File . 19-35
Navigate to a Specific Location . 19-35
Set Bookmarks . 19-39
Navigate Backward and Forward in Files 19-39
Open a File or Variable from Within a File 19-40

Display Two Parts of a File Simultaneously 19-42

Add Reminders to Files . 19-45
Working with TODO/FIXME Reports 19-45

Colors in the MATLAB Editor . 19-49

Code Contains %#ok — What Does That Mean? 19-51

MATLAB Code Analyzer Report . 19-52

xxi

Running the Code Analyzer Report 19-52
Changing Code Based on Code Analyzer Messages 19-54
Other Ways to Access Code Analyzer Messages 19-55

Change Default Editor . 19-56
Set Default Editor . 19-56
Set Default Editor in '-nodisplay' mode 19-56

Programming Utilities

20
Identify Program Dependencies . 20-2
Simple Display of Program File Dependencies 20-2
Detailed Display of Program File Dependencies 20-2
Dependencies Within a Folder . 20-3

Protect Your Source Code . 20-9
Building a Content Obscured Format with P-Code 20-9
Building a Standalone Executable . 20-11

Create Hyperlinks that Run Functions 20-12
Run a Single Function . 20-13
Run Multiple Functions . 20-13
Provide Command Options . 20-14
Include Special Characters . 20-14

Software Development

Error Handling

21
Exception Handling in a MATLAB Application 21-2
Overview . 21-2
Getting an Exception at the Command Line 21-2
Getting an Exception in Your Program Code 21-3

xxii Contents

Generating a New Exception . 21-4

Capture Information About Exceptions 21-5
Overview . 21-5
The MException Class . 21-5
Properties of the MException Class 21-7
Methods of the MException Class . 21-14

Throw an Exception . 21-16

Respond to an Exception . 21-18
Overview . 21-18
The try/catch Statement . 21-18
Suggestions on How to Handle an Exception 21-20

Clean Up When Functions Complete 21-23
Overview . 21-23
Examples of Cleaning Up a Program Upon Exit 21-25
Retrieving Information About the Cleanup Routine 21-27
Using onCleanup Versus try/catch . 21-28
onCleanup in Scripts . 21-28

Issue Warnings and Errors . 21-30
Issue Warnings . 21-30
Throw Errors . 21-30
Add Run-Time Parameters to Your Warnings and
Errors . 21-31

Add Identifiers to Warnings and Errors 21-32

Suppress Warnings . 21-34
Turn Warnings On and Off . 21-35

Restore Warnings . 21-37
Disable and Restore a Particular Warning 21-37
Disable and Restore Multiple Warnings 21-38

Change How Warnings Display . 21-40
Enable Verbose Warnings . 21-40
Display a Stack Trace on a Specific Warning 21-41

xxiii

Use try/catch to Handle Errors . 21-42

Program Scheduling

22
Using a MATLAB Timer Object . 22-2
Overview . 22-2
Example: Displaying a Message . 22-3

Creating Timer Objects . 22-5
Creating the Object . 22-5
Naming the Object . 22-6

Working with Timer Object Properties 22-7
Retrieving the Value of Timer Object Properties 22-7
Setting the Value of Timer Object Properties 22-8

Starting and Stopping Timers . 22-10
Starting a Timer . 22-10
Starting a Timer at a Specified Time 22-10
Stopping Timer Objects . 22-11
Blocking the MATLAB Command Line 22-12

Creating and Executing Callback Functions 22-14
Associating Commands with Timer Object Events 22-14
Creating Callback Functions . 22-15
Specifying the Value of Callback Function Properties 22-17

Timer Object Execution Modes . 22-19
Executing a Timer Callback Function Once 22-19
Executing a Timer Callback Function Multiple Times 22-20
Handling Callback Function Queuing Conflicts 22-21

Deleting Timer Objects from Memory 22-26
Deleting One or More Timer Objects 22-26
Testing the Validity of a Timer Object 22-26

xxiv Contents

Finding Timer Objects in Memory 22-27
Finding All Timer Objects . 22-27
Finding Invisible Timer Objects . 22-27

Performance

23
Analyzing Your Program’s Performance 23-2
Overview . 23-2
Stopwatch Timer Functions . 23-2

Profiling for Improving Performance 23-4
What Is Profiling? . 23-4
Profiling Process and Guidelines . 23-5
Using the Profiler . 23-6
Profile Summary Report . 23-12
Profile Detail Report . 23-14
The profile Function . 23-20

Determining Profiler Coverage . 23-27

Techniques for Improving Performance 23-29
Preallocating Arrays . 23-29
Assigning Variables . 23-30
Using Appropriate Logical Operators 23-31
Additional Tips on Improving Performance 23-31

Vectorization . 23-33
Using Vectorization . 23-33
Indexing Methods for Vectorization 23-34
Array Operations . 23-37
Logical Array Operations . 23-37
Matrix Operations . 23-39
Ordering, Setting, and Counting Operations 23-41
Functions Commonly Used in Vectorizing 23-43

xxv

Memory Usage

24
Memory Allocation . 24-2
Memory Allocation for Arrays . 24-2
Data Structures and Memory . 24-6

Memory Management Functions . 24-12
The whos Function . 24-13

Strategies for Efficient Use of Memory 24-15
Ways to Reduce the Amount of Memory Required 24-15
Using Appropriate Data Storage . 24-17
How to Avoid Fragmenting Memory 24-20
Reclaiming Used Memory . 24-21

Resolving “Out of Memory” Errors 24-23
General Suggestions for Reclaiming Memory 24-23
Setting the Process Limit . 24-23
Disabling Java VM on Startup . 24-25
Increasing System Swap Space . 24-25
Using the 3GB Switch on Windows Systems 24-26
Freeing Up System Resources on Windows Systems 24-27

Custom Help and Documentation

25
Create Help for Classes . 25-2
Help Text from the doc Command . 25-2
Custom Help Text . 25-3

Check Which Programs Have Help 25-10

Create Help Summary Files (Contents.m) 25-13
What Is a Contents.m File? . 25-13
Create a Contents.m File . 25-14
Check an Existing Contents.m File 25-14

xxvi Contents

Display Custom Documentation . 25-16
Overview . 25-16
Identify Your Documentation (info.xml) 25-17
Create a Table of Contents (helptoc.xml) 25-20
Build a Search Database . 25-22
Address Validation Errors for info.xml Files 25-23

Display Custom Examples . 25-25
How to Display Examples . 25-25
Elements of the demos.xml File . 25-28
Thumbnail Images . 25-29

Source Control Interface

26
Source Control Interface on Microsoft Windows 26-2

Set Up Source Control (Microsoft Windows) 26-3
Create Projects in Source Control System 26-3
Specify Source Control System with MATLAB Software . . 26-5
Register Source Control Project with MATLAB Software . . 26-7
Add Files to Source Control . 26-9

Check Files In and Out (Microsoft Windows) 26-11
Check Files Into Source Control . 26-11
Check Files Out of Source Control . 26-11
Undoing the Checkout . 26-12

Additional Source Control Actions (Microsoft
Windows) . 26-14
Getting the Latest Version of Files for Viewing or
Compiling . 26-14

Removing Files from the Source Control System 26-15
Showing File History . 26-16
Comparing the Working Copy of a File to the Latest Version
in Source Control . 26-18

Viewing Source Control Properties of a File 26-20
Starting the Source Control System 26-21

xxvii

Access Source Control from Editors (Microsoft
Windows) . 26-23

Troubleshoot Source Control Problems (Microsoft
Windows) . 26-24
Source Control Error: Provider Not Present or Not Installed
Properly . 26-24

Restriction Against @ Character . 26-25
Add to Source Control Is the Only Action Available 26-25
More Solutions for Source Control Problems 26-25

Source Control Interface on UNIX Platforms 26-26

Specify Source Control System (UNIX Platforms) 26-27
MATLAB Desktop Alternative . 26-27
Function Alternative . 26-28
Setting a View and Checking Out a Folder with ClearCase
Software on UNIX Platforms . 26-28

Check In Files (UNIX Platforms) . 26-30
Checking In One or More Files Using the Current Folder
Browser . 26-30

Checking In One File Using the Editor, or the Simulink or
Stateflow Products . 26-30

Function Alternative . 26-31

Check Out Files (UNIX Platforms) 26-32
Checking Out One or More Files Using the Current Folder
Browser . 26-32

Checking Out a Single File Using the Editor, or the
Simulink or Stateflow Products . 26-33

Function Alternative . 26-33

Undo the Checkout (UNIX Platforms) 26-35
Impact of Undoing a File Checkout 26-35
Undoing the Checkout for One or More Files Using the
Current Folder Browser . 26-35

Function Alternative . 26-35

xxviii Contents

Unit Testing

27
matlab.unittest Package . 27-2

Write Simple Test Case . 27-3

Select Qualification Type . 27-7
Qualification Types . 27-7
Verifiable Qualifications . 27-8
Assumable Qualifications . 27-9
Assertable Qualifications . 27-9
FatalAssertable Qualifications . 27-10
Exception Safe . 27-10

Write Test Methods Using Verifications 27-12

Write TestClassSetup Method Using Assumptions 27-15

Test for Preconditions Using Assertions 27-18

Write Helper Function Using Fatal Assertions 27-23

Write Setup and Teardown Code . 27-25
Test Fixtures . 27-25
Test Case with Method-Level Setup Code 27-25
Test Case with Class-Level Setup Code 27-26

Qualifications Interface . 27-29

Ways to Run Tests . 27-30
Running Tests Directly from Test Cases 27-30
Running Tests from Test Suites . 27-30

Customize Test Runner with Plugins 27-31

Plugins Interface . 27-33

xxix

Create Simple Test Suites . 27-34

Analyze Test Case Results . 27-36

Analyze Failed Test Results . 27-38

Diagnostics Interface . 27-41

Filtered Tests . 27-42
Test Methods . 27-42
Method Setup and Teardown Code 27-42
Class Setup and Teardown Code . 27-42

Constraints Interface . 27-43
Fundamental Constraint-Related Interfaces 27-43
Constraint Implementations . 27-43
ActualValueProxies . 27-46
Tolerances . 27-46
Comparators . 27-47

Index

xxx Contents

Language

• Chapter 1, “Syntax Basics”

• Chapter 2, “Program Components”

1

Syntax Basics

• “Create Variables” on page 1-2

• “Create Numeric Arrays” on page 1-3

• “Continue Long Statements on Multiple Lines” on page 1-5

• “Call Functions” on page 1-6

• “Ignore Function Outputs” on page 1-7

• “Variable Names” on page 1-8

• “Case and Space Sensitivity” on page 1-10

• “Command vs. Function Syntax” on page 1-12

• “Common Errors When Calling Functions” on page 1-16

1 Syntax Basics

Create Variables
This example shows several ways to assign a value to a variable.

x = 5.71;
A = [1 2 3; 4 5 6; 7 8 9];
I = besseli(x,A);

You do not have to declare variables before assigning values.

If you do not end an assignment statement with a semicolon (;), MATLAB®

displays the result in the Command Window. For example,

x = 5.71

displays

x =
5.7100

If you do not explicitly assign the output of a command to a variable, MATLAB
generally assigns the result to the reserved word ans. For example,

5.71

returns

ans =
5.7100

The value of ans changes with every command that returns an output value
that is not assigned to a variable.

1-2

Create Numeric Arrays

Create Numeric Arrays
This example shows how to create a numeric variable. In the MATLAB
computing environment, all variables are arrays, and by default, numeric
variables are of type double (that is, double-precision values). For example,
create a scalar value.

A = 100;

Because scalar values are single element, 1-by-1 arrays,

whos A

returns

Name Size Bytes Class Attributes

A 1x1 8 double

To create a matrix (a two-dimensional, rectangular array of numbers), you
can use the [] operator.

B = [12, 62, 93, -8, 22; 16, 2, 87, 43, 91; -4, 17, -72, 95, 6]

When using this operator, separate columns with a comma or space, and
separate rows with a semicolon. All rows must have the same number of
elements. In this example, B is a 3-by-5 matrix (that is, B has three rows
and five columns).

B =
12 62 93 -8 22
16 2 87 43 91
-4 17 -72 95 6

A matrix with only one row or column (that is, a 1-by-n or n-by-1 array) is
a vector, such as

C = [1, 2, 3]

or

D = [10; 20; 30]

1-3

1 Syntax Basics

For more information, see:

• “Multidimensional Arrays”

• “Matrix Indexing”

1-4

Continue Long Statements on Multiple Lines

Continue Long Statements on Multiple Lines
This example shows how to continue a statement to the next line using
ellipses (...).

s = 1 - 1/2 + 1/3 - 1/4 + 1/5 ...
- 1/6 + 1/7 - 1/8 + 1/9;

Build a long character string by concatenating shorter strings together:

mystring = ['Accelerating the pace of ' ...
'engineering and science'];

The start and end quotation marks for a string must appear on the same
line. For example, this code returns an error, because each line contains only
one quotation mark:

mystring = 'Accelerating the pace of ...
engineering and science'

An ellipses outside a quoted string is equivalent to a space. For example,

x = [1.23...
4.56];

is the same as

x = [1.23 4.56];

1-5

1 Syntax Basics

Call Functions
These examples show how to call a MATLAB function. To run the examples,
you must first create numeric arrays A and B, such as:

A = [1 3 5];
B = [10 6 4];

Enclose inputs to functions in parentheses:

max(A)

Separate multiple inputs with commas:

max(A,B)

Store output from a function by assigning it to a variable:

maxA = max(A)

Enclose multiple outputs in square brackets:

[maxA, location] = max(A)

Call a function that does not require any inputs, and does not return any
outputs, by typing only the function name:

clc

Enclose text string inputs in single quotation marks:

disp('hello world')

Related
Examples

• “Ignore Function Outputs” on page 1-7

1-6

Ignore Function Outputs

Ignore Function Outputs
This example shows how to request specific outputs from a function.

Request all three possible outputs from the fileparts function.

helpFile = which('help');
[helpPath,name,ext] = fileparts(helpFile);

The current workspace now contains three variables from fileparts:
helpPath, name, and ext. In this case, the variables are small. However,
some functions return results that use much more memory. If you do not need
those variables, they waste space on your system.

Request only the first output, ignoring the second and third.

helpPath = fileparts(helpFile);

For any function, you can request only the first N outputs (where N is less
than or equal to the number of possible outputs) and ignore any remaining
outputs. If you request more than one output, enclose the variable names in
square brackets, [].

Ignore the first output using a tilde (~).

[~,name,ext] = fileparts(helpFile);

You can ignore any number of function outputs, in any position in the
argument list. Separate consecutive tildes with a comma, such as

[~,~,ext] = fileparts(helpFile);

1-7

1 Syntax Basics

Variable Names

In this section...

“Valid Names” on page 1-8

“Conflicts with Function Names” on page 1-8

Valid Names
A valid variable name starts with a letter, followed by letters, digits, or
underscores. MATLAB is case sensitive, so A and a are not the same variable.
The maximum length of a variable name is the value that the namelengthmax
command returns.

You cannot define variables with the same names as MATLAB keywords,
such as if or end. For a complete list, run the iskeyword command.

Examples of valid names: Invalid names:

x6 6x

lastValue end

n_factorial n!

Conflicts with Function Names
Avoid creating variables with the same name as a function (such as i, j,
mode, char, size, and path). In general, variable names take precedence over
function names. If you create a variable that uses the name of a function, you
sometimes get unexpected results.

Check whether a proposed name is already in use with the exist or which
function. exist returns 0 if there are no existing variables, functions, or other
artifacts with the proposed name. For example:

exist checkname

ans =
0

1-8

Variable Names

If you inadvertently create a variable with a name conflict, remove the
variable from memory with the clear function.

Another potential source of name conflicts occurs when you define a function
that calls load or eval (or similar functions) to add variables to the
workspace. In some cases, load or eval add variables that have the same
names as functions. Unless these variables are in the function workspace
before the call to load or eval, the MATLAB parser interprets the variable
names as function names. For more information, see:

• “Troubleshooting: Loading Variables within a Function”

• “Alternatives to the eval Function” on page 2-69

See Also clear | exist | iskeyword | namelengthmax | which

1-9

1 Syntax Basics

Case and Space Sensitivity
MATLAB code is sensitive to casing, and insensitive to blank spaces except
when defining arrays.

Uppercase and Lowercase

In MATLAB code, use an exact match with regard to case for variables, files,
and functions. For example, if you have a variable, a, you cannot refer to
that variable as A. It is a best practice to use lowercase only when naming
functions. This is especially useful when you use both Microsoft® Windows®

and UNIX®1 platforms because their file systems behave differently with
regard to case.

When you use the help function, the help displays some function names in all
uppercase, for example, PLOT, solely to distinguish the function name from the
rest of the text. Some functions for interfacing to Oracle® Java® software do
use mixed case and the command-line help and the documentation accurately
reflect that.

Spaces

Blank spaces around operators such as -, :, and (), are optional, but they
can improve readability. For example, MATLAB interprets the following
statements the same way.

y = sin (3 * pi) / 2
y=sin(3*pi)/2

However, blank spaces act as delimiters in horizontal concatenation. When
defining row vectors, you can use spaces and commas interchangeably to
separate elements:

A = [1, 0 2, 3 3]

A =

1 0 2 3 3

1. UNIX is a registered trademark of The Open Group in the United States and other
countries.

1-10

Case and Space Sensitivity

Because of this flexibility, check to ensure that MATLAB stores the correct
values. For example, the statement [1 sin (pi) 3] produces a much
different result than [1 sin(pi) 3] does.

[1 sin (pi) 3]

Error using sin
Not enough input arguments.

[1 sin(pi) 3]

ans =

1.0000 0.0000 3.0000

1-11

1 Syntax Basics

Command vs. Function Syntax

In this section...

“Command and Function Syntaxes” on page 1-12

“Avoid Common Syntax Mistakes” on page 1-13

“How MATLAB Recognizes Command Syntax” on page 1-14

Command and Function Syntaxes
In MATLAB, these statements are equivalent:

load durer.mat % Command syntax
load('durer.mat') % Function syntax

This equivalence is sometimes referred to as command-function duality.

All functions support this standard function syntax:

[output1, ..., outputM] = functionName(input1, ..., inputN)

If you do not require any outputs from the function, and all of the inputs
are literal strings (that is, text enclosed in single quotation marks), you can
use this simpler command syntax:

functionName input1 ... inputN

With command syntax, you separate inputs with spaces rather than commas,
and do not enclose input arguments in parentheses. Because all inputs are
literal strings, single quotation marks are optional, unless the input string
contains spaces. For example:

disp 'hello world'

When a function input is a variable, you must use function syntax to pass the
value to the function. Command syntax always passes inputs as literal text
and cannot pass variable values. For example, create a variable and call the
disp function with function syntax to pass the value of the variable:

A = 123;
disp(A)

1-12

Command vs. Function Syntax

This code returns the expected result,

123

You cannot use command syntax to pass the value of A, because this call

disp A

is equivalent to

disp('A')

and returns

A

Avoid Common Syntax Mistakes
Suppose that your workspace contains these variables:

filename = 'accounts.txt';
A = int8(1:8);
B = A;

The following table illustrates common misapplications of command syntax.

This Command... Is Equivalent to... Correct Syntax for Passing
Value

open filename open('filename') open(filename)

isequal A B isequal('A','B') isequal(A,B)

strcmp class(A) int8 strcmp('class(A)','int8') strcmp(class(A),'int8')

cd matlabroot cd('matlabroot') cd(matlabroot)

isnumeric 500 isnumeric('500') isnumeric(500)

round 3.499 round('3.499'), same as
round([51 46 52 57 57])

round(3.499)

Passing Variable Names
Some functions expect literal strings for variable names, such as save, load,
clear, and whos. For example,

1-13

1 Syntax Basics

whos -file durer.mat X

requests information about variable X in the example file durer.mat. This
command is equivalent to

whos('-file','durer.mat','X')

How MATLAB Recognizes Command Syntax
Consider the potentially ambiguous statement

ls ./d

This could be a call to the ls function with the folder ./d as its argument. It
also could request elementwise division on the array ls, using the variable
d as the divisor.

If you issue such a statement at the command line, MATLAB can access the
current workspace and path to determine whether ls and d are functions or
variables. However, some components, such as the Code Analyzer and the
Editor/Debugger, operate without reference to the path or workspace. In those
cases, MATLAB uses syntactic rules to determine whether an expression is a
function call using command syntax.

In general, when MATLAB recognizes an identifier (which might name a
function or a variable), it analyzes the characters that follow the identifier to
determine the type of expression, as follows:

• An equal sign (=) implies assignment. For example:

ls =d

• An open parenthesis after an identifier implies a function call. For example:

ls('./d')

• Space after an identifier, but not after a potential operator, implies a
function call using command syntax. For example:

ls ./d

1-14

Command vs. Function Syntax

• Spaces on both sides of a potential operator, or no spaces on either side
of the operator, imply an operation on variables. For example, these
statements are equivalent:

ls ./ d

ls./d

Therefore, the potentially ambiguous statement ls ./d is a call to the ls
function using command syntax.

The best practice is to avoid defining variable names that conflict with
common functions, to prevent any ambiguity.

1-15

1 Syntax Basics

Common Errors When Calling Functions

In this section...

“Conflicting Function and Variable Names” on page 1-16

“Undefined Functions or Variables” on page 1-16

Conflicting Function and Variable Names
MATLAB throws an error if a variable and function have been given the same
name and there is insufficient information available for MATLAB to resolve
the conflict. You may see an error message something like the following:

Error: <functionName> was previously used as a variable,
conflicting with its use here as the name of a function
or command.

where <functionName> is the name of the function.

Certain uses of the eval and load functions can also result in a similar
conflict between variable and function names. For more information, see:

• “Conflicts with Function Names” on page 1-8

• “Troubleshooting: Loading Variables within a Function”

• “Alternatives to the eval Function” on page 2-69

Undefined Functions or Variables
You may encounter the following error message, or something similar, while
working with functions or variables in MATLAB:

Undefined function or variable 'x'.

These errors usually indicate that MATLAB cannot find a particular variable
or MATLAB program file in the current directory or on the search path. The
root cause is likely to be one of the following:

• The name of the function has been misspelled.

1-16

Common Errors When Calling Functions

• The function name and name of the file containing the function are not
the same.

• The toolbox to which the function belongs is not installed.

• The search path to the function has been changed.

• The function is part of a toolbox that you do not have a license for.

Follow the steps described in this section to resolve this situation.

Verify the Spelling of the Function Name
One of the most common errors is misspelling the function name. Especially
with longer function names or names containing similar characters (e.g., letter
l and numeral one), it is easy to make an error that is not easily detected.

If you misspell a MATLAB function, a suggested function name appears in
the Command Window. For example, this command fails because it includes
an uppercase letter in the function name:

accumArray

Undefined function or variable 'accumArray'.

Did you mean:
>> accumarray

Press Enter to execute the suggested command or Esc to dismiss it.

Make Sure the Function Name Matches the File Name
You establish the name for a function when you write its function definition
line. This name should always match the name of the file you save it to. For
example, if you create a function named curveplot,

function curveplot(xVal, yVal)
- program code -

then you should name the file containing that function curveplot.m. If you
create a pcode file for the function, then name that file curveplot.p. In the
case of conflicting function and file names, the file name overrides the name
given to the function. In this example, if you save the curveplot function to a

1-17

1 Syntax Basics

file named curveplotfunction.m, then attempts to invoke the function using
the function name will fail:

curveplot
Undefined function or variable 'curveplot'.

If you encounter this problem, change either the function name or file name
so that they are the same. If you have difficulty locating the file that uses this
function, use the MATLAB Find Files utility as follows:

1 On the Home tab, in the File section, click Find Files.

2 Under Find files named: enter *.m

3 Under Find files containing text: enter the function name.

4 Click the Find button

1-18

Common Errors When Calling Functions

Make Sure the Toolbox Is Installed
If you are unable to use a built-in function from MATLAB or its toolboxes,
make sure that the function is installed.

If you do not know which toolbox supports the function you need, search
for the function documentation at http://www.mathworks.com/help. The
toolbox name appears at the top of the function reference page.

Once you know which toolbox the function belongs to, use the ver function to
see which toolboxes are installed on the system from which you run MATLAB.
The ver function displays a list of all currently installed MathWorks®

products. If you can locate the toolbox you need in the output displayed
by ver, then the toolbox is installed. For help with installing MathWorks
products, see the Installation Guide documentation.

If you do not see the toolbox and you believe that it is installed, then perhaps
the MATLAB path has been set incorrectly. Go on to the next section.

Verify the Path Used to Access the Function
This step resets the path to the default. Because MATLAB stores the toolbox
information in a cache file, you will need to first update this cache and then
reset the path. To do this,

1 On the Home tab, in the Environment section, click Preferences.

The Preference dialog box appears.

2 Under the General node, click the Update Toolbox Path Cache button.

3 On the Home tab, in the Environment section, click Set Path....

The Set Path dialog box opens.

4 Click Default.

A small dialog box opens warning that you will lose your current path
settings if you proceed. Click Yes if you decide to proceed.

(If you have added any custom paths to MATLAB, you will need to restore
those later)

1-19

http://www.mathworks.com/help

1 Syntax Basics

Run ver again to see if the toolbox is installed. If not, you may need to
reinstall this toolbox to use this function. See the Related Solution 1-1CBD3,
"How do I install additional toolboxes into my existing MATLAB" for more
information about installing a toolbox.

Once ver shows your toolbox, run the following command to see if you can
find the function:

which -all <functionname>

replacing <functionname> with the name of the function. You should be
presented with the path(s) of the function file. If you get a message indicating
that the function name was not found, you may need to reinstall that toolbox
to make the function active.

Verify that Your License Covers The Toolbox
If you receive the error message “Has no license available”, there is a
licensing related issue preventing you from using the function. To find the
error that is occurring, you can use the following command:

license checkout <toolbox_license_key_name>

replacing <toolbox_license_key_name> with the proper key name for the
toolbox that contains your function. To find the license key name, look at
the INCREMENT lines in your license file. For information on how to find
your license file see the related solution: 1-63ZIR6, "Where are the license
files for MATLAB located?”

The license key names of all the toolboxes are located after each INCREMENT
tag in the license.dat file. For example:

INCREMENT MATLAB MLM 17 00-jan-0000 0 k
B454554BADECED4258 \HOSTID=123456 SN=123456

If your license.dat file has no INCREMENT lines, refer to your license
administrator for them. For example, to test the licensing for Symbolic Math
Toolbox™, you would run the following command:

license checkout Symbolic_Toolbox

1-20

http://www.mathworks.com/support/solutions/en/data/1-1CBD3/?solution=1-1CBD3
http://www.mathworks.co.kr/support/solutions/en/data/1-63ZIR6/index.html?solution=1-63ZIR6
http://www.mathworks.co.kr/support/solutions/en/data/1-63ZIR6/index.html?solution=1-63ZIR6

Common Errors When Calling Functions

A correct testing gives the result "ANS=1". An incorrect testing results in an
error from the license manager. You can either troubleshoot the error by
looking up the license manager error here:

http://www.mathworks.com/support/install.html

or you can contact the Installation Support Team with the error here:

http://www.mathworks.com/support/contact_us/index.html

When contacting support, provide your license number, your MATLAB
version, the function you are using, and the license manager error (if
applicable).

1-21

1 Syntax Basics

1-22

2

Program Components

• “Operators” on page 2-2

• “Special Values” on page 2-13

• “Conditional Statements” on page 2-15

• “Loop Control Statements” on page 2-17

• “Represent Dates and Times in MATLAB” on page 2-19

• “Compute Elapsed Time” on page 2-21

• “Carryover in Date Vectors and Strings” on page 2-24

• “Troubleshooting: Converting Date Vector Returns Unexpected Output”
on page 2-25

• “Regular Expressions” on page 2-26

• “Lookahead Assertions in Regular Expressions” on page 2-43

• “Tokens in Regular Expressions” on page 2-46

• “Dynamic Regular Expressions” on page 2-52

• “Comma-Separated Lists” on page 2-61

• “Alternatives to the eval Function” on page 2-69

• “Shell Escape Functions” on page 2-73

• “Symbol Reference” on page 2-74

2 Program Components

Operators

In this section...

“Arithmetic Operators” on page 2-2

“Relational Operators” on page 2-3

“Logical Operators” on page 2-4

“Operator Precedence” on page 2-11

Arithmetic Operators
Arithmetic operators perform numeric computations, for example, adding two
numbers or raising the elements of an array to a given power. The following
table provides a summary. For more information, see the arithmetic operators
reference page.

Operator Description

+ Addition

- Subtraction

.* Multiplication

./ Right division

.\ Left division

+ Unary plus

- Unary minus

: Colon operator

.^ Power

.' Transpose

' Complex conjugate transpose

* Matrix multiplication

/ Matrix right division

\ Matrix left division

^ Matrix power

2-2

../ref/arithmeticoperators.html

Operators

Arithmetic Operators and Arrays
Except for some matrix operators, MATLAB arithmetic operators work on
corresponding elements of arrays with equal dimensions. For vectors and
rectangular arrays, both operands must be the same size unless one is a
scalar. If one operand is a scalar and the other is not, MATLAB applies
the scalar to every element of the other operand—this property is known
as scalar expansion.

This example uses scalar expansion to compute the product of a scalar
operand and a matrix.

A = magic(3)
A =

8 1 6
3 5 7
4 9 2

3 * A
ans =

24 3 18
9 15 21

12 27 6

Relational Operators
Relational operators compare operands quantitatively, using operators like
“less than” and “not equal to.” The following table provides a summary. For
more information, see the relational operators reference page.

Operator Description

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equal to

~= Not equal to

2-3

../ref/relationaloperators.html

2 Program Components

Relational Operators and Arrays
The MATLAB relational operators compare corresponding elements
of arrays with equal dimensions. Relational operators always operate
element-by-element. In this example, the resulting matrix shows where an
element of A is equal to the corresponding element of B.

A = [2 7 6;9 0 5;3 0.5 6];
B = [8 7 0;3 2 5;4 -1 7];

A == B
ans =

0 1 0
0 0 1
0 0 0

For vectors and rectangular arrays, both operands must be the same size
unless one is a scalar. For the case where one operand is a scalar and the
other is not, MATLAB tests the scalar against every element of the other
operand. Locations where the specified relation is true receive logical 1.
Locations where the relation is false receive logical 0.

Relational Operators and Empty Arrays
The relational operators work with arrays for which any dimension has size
zero, as long as both arrays are the same size or one is a scalar. However,
expressions such as

A == []

return an error if A is not 0-by-0 or 1-by-1. This behavior is consistent with
that of all other binary operators, such as +, -, >, <, &, |, etc.

To test for empty arrays, use the function

isempty(A)

Logical Operators
MATLAB offers three types of logical operators and functions:

• Element-wise — operate on corresponding elements of logical arrays.

2-4

Operators

• Bit-wise — operate on corresponding bits of integer values or arrays.

• Short-circuit — operate on scalar, logical expressions.

The values returned by MATLAB logical operators and functions, with the
exception of bit-wise functions, are of type logical and are suitable for use
with logical indexing.

Element-Wise Operators and Functions
The following logical operators and functions perform element-wise logical
operations on their inputs to produce a like-sized output array.

The examples shown in the following table use vector inputs A and B, where

A = [0 1 1 0 1];
B = [1 1 0 0 1];

Operator Description Example

& Returns 1 for every element location that is
true (nonzero) in both arrays, and 0 for all other
elements.

A & B =
01001

| Returns 1 for every element location that is
true (nonzero) in either one or the other, or both
arrays, and 0 for all other elements.

A | B =
11101

~ Complements each element of the input array, A. ~A =
10010

xor Returns 1 for every element location that is true
(nonzero) in only one array, and 0 for all other
elements.

xor(A,B)
= 10100

For operators and functions that take two array operands, (&, |, and xor),
both arrays must have equal dimensions, with each dimension being the
same size. The one exception to this is where one operand is a scalar and the
other is not. In this case, MATLAB tests the scalar against every element
of the other operand.

2-5

2 Program Components

Note MATLAB converts any finite nonzero, numeric values used as inputs to
logical expressions to logical 1, or true.

Operator Overloading. You can overload the &, |, and ~ operators to make
their behavior dependent upon the class on which they are being used. Each
of these operators has a representative function that is called whenever that
operator is used. These are shown in the table below.

Logical
Operation Equivalent Function

A & B and(A, B)

A | B or(A, B)

~A not(A)

Other Array Functions. Two other MATLAB functions that operate
logically on arrays, but not in an element-wise fashion, are any and all.
These functions show whether any or all elements of a vector, or a vector
within a matrix or an array, are nonzero.

When used on a matrix, any and all operate on the columns of the matrix.
When used on an N-dimensional array, they operate on the first nonsingleton
dimension of the array. Or, you can specify an additional dimension input to
operate on a specific dimension of the array.

The examples shown in the following table use array input A, where

A = [0 1 2;
0 -3 8;
0 5 0];

2-6

Operators

Function Description Example

any(A) Returns 1 for a vector where any element
of the vector is true (nonzero), and 0 if no
elements are true.

any(A) ans = 0
1 1

all(A) Returns 1 for a vector where all elements of
the vector are true (nonzero), and 0 if all
elements are not true.

all(A) ans = 0
1 0

Note The all and any functions ignore any NaN values in the input arrays.

Short-Circuiting in element-wise Operators. When used in the context of
an if or while expression, and only in this context, the element-wise | and &
operators use short-circuiting in evaluating their expressions. That is, A|B
and A&B ignore the second operand, B, if the first operand, A, is sufficient to
determine the result.

So, although the statement 1|[] evaluates to false, the same statement
evaluates to true when used in either an if or while expression:

A = 1; B = [];
if(A|B) disp 'The statement is true', end;

The statement is true

while the reverse logical expression, which does not short-circuit, evaluates
to false

if(B|A) disp 'The statement is true', end;

Another example of short-circuiting with element-wise operators shows that a
logical expression such as the following, which under most circumstances is
invalid due to a size mismatch between A and B,

A = [1 1]; B = [2 0 1];
A|B % This generates an error.

works within the context of an if or while expression:

if (A|B) disp 'The statement is true', end;

2-7

2 Program Components

The statement is true

Logical Expressions Using the find Function. The find function
determines the indices of array elements that meet a given logical condition.
The function is useful for creating masks and index matrices. In its most
general form, find returns a single vector of indices. This vector can be used
to index into arrays of any size or shape.

For example,

A = magic(4)
A =

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

i = find(A > 8);
A(i) = 100
A =

100 2 3 100
5 100 100 8

100 7 6 100
4 100 100 1

Note An alternative to using find in this context is to index into the matrix
using the logical expression itself. See the example below.

The last two statements of the previous example can be replaced with this
one statement:

A(A > 8) = 100;

You can also use find to obtain both the row and column indices of a
rectangular matrix for the array values that meet the logical condition:

A = magic(4)
A =

16 2 3 13

2-8

Operators

5 11 10 8
9 7 6 12
4 14 15 1

[row, col] = find(A > 12)
row =

1
4
4
1

col =
1
2
3
4

Bit-Wise Functions
The following functions perform bit-wise logical operations on integer inputs.
Inputs may be scalar or in arrays. If in arrays, these functions produce a
like-sized output array.

The examples shown in the following table use scalar inputs A and B, where

A = 28; % binary 00011100
B = 21; % binary 00010101

Function Description Example

bitand Returns the bit-wise AND of
two integer arguments.

bitand(A,B) = 20 (binary
00010100)

bitor Returns the bit-wise OR of
two integer arguments.

bitor(A,B) = 29 (binary
00011101)

2-9

2 Program Components

Function Description Example

bitcmp Returns the bit-wise
complement, assuming the
second argument specifies
the integer data type of the
first argument. By default,
MATLAB treats double
values as uint64 integers.

bitcmp(A,'int8') = -29
(binary 11100011)

bitxor Returns the bit-wise exclusive
OR of two integer arguments.

bitxor(A,B) = 9 (binary
00001001)

Short-Circuit Operators
The following operators perform AND and OR operations on logical
expressions containing scalar values. They are short-circuit operators in
that they evaluate their second operand only when the result is not fully
determined by the first operand.

Operator Description

&& Returns logical 1 (true) if both inputs evaluate to true, and
logical 0 (false) if they do not.

|| Returns logical 1 (true) if either input, or both, evaluate to
true, and logical 0 (false) if they do not.

The statement shown here performs an AND of two logical terms, A and B:

A && B

If A equals zero, then the entire expression will evaluate to logical 0 (false),
regardless of the value of B. Under these circumstances, there is no need
to evaluate B because the result is already known. In this case, MATLAB
short-circuits the statement by evaluating only the first term.

A similar case is when you OR two terms and the first term is true. Again,
regardless of the value of B, the statement will evaluate to true. There is no
need to evaluate the second term, and MATLAB does not do so.

2-10

Operators

Advantage of Short-Circuiting. You can use the short-circuit operators
to evaluate an expression only when certain conditions are satisfied. For
example, you want to execute a function only if the function file resides on
the current MATLAB path.

Short-circuiting keeps the following code from generating an error when the
file, myfun.m, cannot be found:

comp = (exist('myfun.m') == 2) && (myfun(x) >= y)

Similarly, this statement avoids attempting to divide by zero:

x = (b ~= 0) && (a/b > 18.5)

You can also use the && and || operators in if and while statements to take
advantage of their short-circuiting behavior:

if (nargin >= 3) && (ischar(varargin{3}))

Operator Precedence
You can build expressions that use any combination of arithmetic, relational,
and logical operators. Precedence levels determine the order in which
MATLAB evaluates an expression. Within each precedence level, operators
have equal precedence and are evaluated from left to right. The precedence
rules for MATLAB operators are shown in this list, ordered from highest
precedence level to lowest precedence level:

1 Parentheses ()

2 Transpose (.'), power (.^), complex conjugate transpose ('), matrix power
(^)

3 Unary plus (+), unary minus (-), logical negation (~)

4 Multiplication (.*), right division (./), left division (.\), matrix
multiplication (*), matrix right division (/), matrix left division (\)

5 Addition (+), subtraction (-)

6 Colon operator (:)

2-11

2 Program Components

7 Less than (<), less than or equal to (<=), greater than (>), greater than or
equal to (>=), equal to (==), not equal to (~=)

8 Element-wise AND (&)

9 Element-wise OR (|)

10 Short-circuit AND (&&)

11 Short-circuit OR (||)

Precedence of AND and OR Operators
MATLAB always gives the & operator precedence over the | operator.
Although MATLAB typically evaluates expressions from left to right, the
expression a|b&c is evaluated as a|(b&c). It is a good idea to use parentheses
to explicitly specify the intended precedence of statements containing
combinations of & and |.

The same precedence rule holds true for the && and || operators.

Overriding Default Precedence
The default precedence can be overridden using parentheses, as shown in
this example:

A = [3 9 5];
B = [2 1 5];
C = A./B.^2
C =

0.7500 9.0000 0.2000

C = (A./B).^2
C =

2.2500 81.0000 1.0000

2-12

Special Values

Special Values
Several functions return important special values that you can use in your
own program files.

Function Return Value

ans Most recent answer (variable). If you do not assign
an output variable to an expression, MATLAB
automatically stores the result in ans.

eps Floating-point relative accuracy. This is the
tolerance the MATLAB software uses in its
calculations.

intmax Largest 8-, 16-, 32-, or 64-bit integer your computer
can represent.

intmin Smallest 8-, 16-, 32-, or 64-bit integer your
computer can represent.

realmax Largest floating-point number your computer can
represent.

realmin Smallest positive floating-point number your
computer can represent.

pi 3.1415926535897...

i, j Imaginary unit.

inf Infinity. Calculations like n/0, where n is any
nonzero real value, result in inf.

NaN Not a Number, an invalid numeric value.
Expressions like 0/0 and inf/inf result in a NaN,
as do arithmetic operations involving a NaN. Also, if
n is complex with a zero real part, then n/0 returns
a value with a NaN real part.

computer Computer type.

version MATLAB version string.

2-13

2 Program Components

Here are some examples that use these values in MATLAB expressions.

x = 2 * pi
x =

6.2832

A = [3+2i 7-8i]
A =

3.0000 + 2.0000i 7.0000 - 8.0000i

tol = 3 * eps
tol =

6.6613e-016

intmax('uint64')
ans =

18446744073709551615

2-14

Conditional Statements

Conditional Statements
Conditional statements enable you to select at run time which block of code to
execute. The simplest conditional statement is an if statement. For example:

% Generate a random number
a = randi(100, 1);

% If it is even, divide by 2
if rem(a, 2) == 0

disp('a is even')
b = a/2;

end

if statements can include alternate choices, using the optional keywords
elseif or else. For example:

a = randi(100, 1);

if a < 30
disp('small')

elseif a < 80
disp('medium')

else
disp('large')

end

Alternatively, when you want to test for equality against a set of known
values, use a switch statement. For example:

[dayNum, dayString] = weekday(date, 'long', 'en_US');

switch dayString
case 'Monday'

disp('Start of the work week')
case 'Tuesday'

disp('Day 2')
case 'Wednesday'

disp('Day 3')
case 'Thursday'

disp('Day 4')

2-15

2 Program Components

case 'Friday'
disp('Last day of the work week')

otherwise
disp('Weekend!')

end

For both if and switch, MATLAB executes the code corresponding to the
first true condition, and then exits the code block. Each conditional statement
requires the end keyword.

In general, when you have many possible discrete, known values, switch
statements are easier to read than if statements. However, you cannot test
for inequality between switch and case values. For example, you cannot
implement this type of condition with a switch:

yourNumber = input('Enter a number: ');

if yourNumber < 0
disp('Negative')

elseif yourNumber > 0
disp('Positive')

else
disp('Zero')

end

2-16

Loop Control Statements

Loop Control Statements
With loop control statements, you can repeatedly execute a block of code.
There are two types of loops:

• for statements loop a specific number of times, and keep track of each
iteration with an incrementing index variable.

For example, preallocate a 10-element vector, and calculate five values:

x = ones(1,10);
for n = 2:6

x(n) = 2 * x(n - 1);
end

• while statements loop as long as a condition remains true.

For example, find the first integer n for which factorial(n) is a 100-digit
number:

n = 1;
nFactorial = 1;
while nFactorial < 1e100

n = n + 1;
nFactorial = nFactorial * n;

end

Each loop requires the end keyword.

It is a good idea to indent the loops for readability, especially when they are
nested (that is, when one loop contains another loop):

A = zeros(5,100);
for m = 1:5

for n = 1:100
A(m, n) = 1/(m + n - 1);

end
end

You can programmatically exit a loop using a break statement, or skip to
the next iteration of a loop using a continue statement. For example, count

2-17

2 Program Components

the number of lines in the help for the magic function (that is, all comment
lines until a blank line):

fid = fopen('magic.m','r');
count = 0;
while ~feof(fid)

line = fgetl(fid);
if isempty(line)

break
elseif ~strncmp(line,'%',1)

continue
end
count = count + 1;

end
fprintf('%d lines in MAGIC help\n',count);
fclose(fid);

Tip If you inadvertently create an infinite loop (a loop that never ends on its
own), stop execution of the loop by pressing Ctrl+C.

2-18

Represent Dates and Times in MATLAB®

Represent Dates and Times in MATLAB
MATLAB represents date and time information in any of three formats:

• Date String — A character string.

Example: Thursday, August 23, 2012 9:45:44.946 AM

• Date Vector — A 1-by-6 numeric vector containing the year, month, day,
hour, minute, and second.

Example: [2012 8 23 9 45 44.946]

• Serial Date Number — A single number equal to the number of days since
January 0, 0000.

Example: 7.3510e+005

You can use any of these formats. If you work with more than one date and
time format, you can convert from one format to another using the datestr,
datevec, and datenum functions.

Date Strings
A date string is a character string composed of fields related to a specific date
and/or time. There are several ways to represent dates and times in character
string format. For example, all of the following are date strings for August 23,
2010 at 04:35:42 PM:

'23-Aug-2010 04:35:06 PM'
'Wednesday, August 23'
'08/23/10 16:35'
'Aug 23 16:35:42.946'

You can represent time in a date string using either a 12-hour or 24-hour
system.

When you create a date string, include any characters you might need to
separate the fields, such as the hyphen, space, and colon used here:

d = '23-Aug-2010 16:35:42'

2-19

2 Program Components

Date Vectors
A date vector is a 1-by-6 matrix of double-precision numbers arranged in the
following order:

year month day hour minute second

The following date vector represents 10:45:07 AM on October 24, 2009:

[2009 10 24 10 45 07]

Date vectors must follow these guidelines:

• All six elements, or fields, of the vector are required. If you are interested
only in the date, and not the time, you can set the last three digits of the
vector to zero.

• Date vectors have no separate field in which to specify milliseconds.
However, the seconds field has a fractional part and accurately keeps
the milliseconds field.

• Time values are expressed in 24-hour notation. There is no AM or PM
setting.

Serial Date Numbers
A serial date number represents a calendar date as the number of days that
has passed since a fixed base date. In MATLAB, serial date number 1 is
January 1, 0000.

MATLAB also uses serial time to represent fractions of days beginning
at midnight; for example, 6 p.m. equals 0.75 serial days. So the string
'31-Oct-2003, 6:00 PM' in MATLAB is date number 731885.75.

If you pass date vectors or date strings to a MATLAB function that accepts
such inputs, MATLAB first converts the input to serial date numbers. If you
are working with a large number of dates or doing extensive calculations with
dates, use serial date numbers for better performance.

2-20

Compute Elapsed Time

Compute Elapsed Time

In this section...

“Compute Elapsed Time” on page 2-21

“Compute Future Date” on page 2-22

Compute Elapsed Time
This example shows how to compute the time elapsed between 8:15 a.m. and
3:45 p.m. on different days, and display the result.

Define the start and finish dates. Your data might be in date string or date
vector format.

start = '20-Apr-2012 8:15';
finish = [2012 04 23 15 45 00];

Convert date strings and date vectors to serial date numbers using the
datenum function. Work with serial date numbers when computing elapsed
time.

start_n = datenum(start,'dd-mmm-yyyy HH:MM');
finish_n = datenum(finish);

Subtract the start date from the finish date. Subtracting serial date numbers
returns a rational number of days.

n = finish_n - start_n

n =
3.3125

The elapsed time is 3.3125 days.

Display the elapsed time in days, hours, and minutes using the datestr
function.

days = floor(n);
hrs = datestr(n, 'HH');
mins = datestr(n, 'MM');

2-21

2 Program Components

fprintf('\n %d days, %s hours, %s minutes\n', ...
days, hrs, mins);

3 days, 07 hours, 30 minutes

Compute Future Date
You can compute future dates by adding to a date. This topic shows two
ways to do this.

• “Add Days to a Serial Date Number” on page 2-22

• “Add Years, Months, Days, or Time to a Date” on page 2-23

Add Days to a Serial Date Number
You can add a rational number of days to a serial date number.

The now function returns the current date in serial date number format. You
can add a number to this date. For this example, add 50 days.

futuredate = now+50

futuredate =
7.3500e+05

Alternatively, the initial date might be in date string format. Convert the
date to a serial date number using the datenum function.

initialdate = datenum('21.03.2012 13:15','dd.mm.yyyy HH:MM');

Add a rational number of dates to the initial date. In this example, add 5.5
days.

futuredate = initialdate + 5.5

futuredate =
7.3496e+05

You can convert the future date to date string format.

datestr(futuredate,'dd.mm.yyyy HH:MM')

2-22

Compute Elapsed Time

ans =
27.03.2012 01:15

Add Years, Months, Days, or Time to a Date
The addtodate function adds a number of years, months, days, hours,
minutes, seconds, or milliseconds to a date in serial date number format. For
example, add 5 months to January 3, 2012:

Convert the date string to serial date number format.

initialdate = datenum('03/01/2012','dd/mm/yyyy');

Use the addtodate function to add 5 months to the initial date.

futuredate = addtodate(initialdate,5,'month')

futuredate =
735023

To convert the future date to a date string, use the datestr function.

datestr(futuredate, 'dddd, mmmm dd')

ans =
Sunday, June 03

See Also addtodate | datenum | datestr | now

2-23

2 Program Components

Carryover in Date Vectors and Strings
When computing date vectors, MATLAB automatically carries over date
vector elements that lie outside their conventional ranges to the next element.
Elements can have negative values. For example, month values greater than
12 are carried to years. Month values less than 1 are set to 1. Day values, D,
less than 1 are set to the last day of the previous month minus |D|.

In the following example, the month element has a value of 22. MATLAB
increments the year value to 2010 and sets the month to October.

datestr([2009 22 03 00 00 00])

ans =
03-Oct-2010

The carrying forward of values also applies to time and day values in date
strings. For example, October 3, 2010 and September 33, 2010 are interpreted
to be the same date, and correspond to the same serial date number.

datenum('03-Oct-2010')

ans =
734414

datenum('33-Sep-2010')

ans =
734414

The following example takes the input month (07, or July), finds the last day
of the previous month (June 30), and subtracts the number of days in the field
specifier (5 days) from that date to yield a return date of June 25, 2010.

datestr([2010 07 -05 00 00 00])

ans =
25-Jun-2010

2-24

Troubleshooting: Converting Date Vector Returns Unexpected Output

Troubleshooting: Converting Date Vector Returns
Unexpected Output

In the following example, the year 3000 is beyond the range of years for
which MATLAB defaults to date vector format. Because of this, the input is
considered to be a vector of date numbers:

datestr([3000 11 05 10 32 56])
ans =

18-Mar-0008
11-Jan-0000
05-Jan-0000
10-Jan-0000
01-Feb-0000
25-Feb-0000

If you intend for the input to be a date vector instead, explicitly convert
the date vector it to a date number first using the datenum function. Then,
convert the value returned by datenum to the desired format:

dn = datenum([3000 11 05 10 32 56]);
ds = datestr(dn)
ds =

05-Nov-3000 10:32:56

When working with date format conversions of vectors, MATLAB defaults to
date vector format if the values for each of the elements in a six-element
vector are within an approximate range of 300 greater than or 550 less than
the value for that element corresponding to the current date. If a value for
any of the elements is outside of this range, MATLAB considers the vector to
be a vector of six serial date numbers.

2-25

2 Program Components

Regular Expressions

In this section...

“What Is a Regular Expression?” on page 2-26

“Steps for Building Expressions” on page 2-28

“Operators and Characters” on page 2-31

What Is a Regular Expression?
A regular expression is a string of characters that defines a certain pattern.
You normally use a regular expression to search text for a group of words
that matches the pattern, for example, while parsing program input or while
processing a block of text.

The string 'Joh?n\w*' is an example of a regular expression. It defines a
pattern that starts with the letters Jo, is optionally followed by the letter
h (indicated by 'h?'), is then followed by the letter n, and ends with any
number of word characters, that is, characters that are alphabetic, numeric,
or underscore (indicated by '\w*'). This pattern matches any of the following:

Jon, John, Jonathan, Johnny

Regular expressions provide a unique way to search a volume of text for a
particular subset of characters within that text. Instead of looking for an
exact character match as you would do with a function like strfind, regular
expressions give you the ability to look for a particular pattern of characters.

For example, several ways of expressing a metric rate of speed are:

km/h
km/hr
km/hour
kilometers/hour
kilometers per hour

You could locate any of the above terms in your text by issuing five separate
search commands:

strfind(text, 'km/h');

2-26

Regular Expressions

strfind(text, 'km/hour');
% etc.

To be more efficient, however, you can build a single phrase that applies to
all of these search strings:

Translate this phrase it into a regular expression (to be explained later in
this section) and you have:

pattern = 'k(ilo)?m(eters)?(/|\sper\s)h(r|our)?';

Now locate one or more of the strings using just a single command:

text = ['The high-speed train traveled at 250 ', ...
'kilometers per hour alongside the automobile ', ...
'travelling at 120 km/h.'];

regexp(text, pattern, 'match')

ans =
'kilometers per hour' 'km/h'

There are four MATLAB functions that support searching and replacing
characters using regular expressions. The first three are similar in the input
values they accept and the output values they return. For details, click the
links to the function reference pages.

Function Description

regexp Match regular expression.

regexpi Match regular expression, ignoring case.

2-27

2 Program Components

Function Description

regexprep Replace part of string using regular
expression.

regexptranslate Translate string into regular expression.

When calling any of the first three functions, pass the string to be parsed
and the regular expression in the first two input arguments. When calling
regexprep, pass an additional input that is an expression that specifies a
pattern for the replacement string.

Steps for Building Expressions
There are three steps involved in using regular expressions to search text
for a particular string:

1 Identify unique patterns in the string

This entails breaking up the string you want to search for into groups of like
character types. These character types could be a series of lowercase letters,
a dollar sign followed by three numbers and then a decimal point, etc.

2 Express each pattern as a regular expression

Use the metacharacters and operators described in this documentation to
express each segment of your search string as a regular expression. Then
combine these expression segments into the single expression to use in
the search.

3 Call the appropriate search function

Pass the string you want to parse to one of the search functions, such as
regexp or regexpi, or to the string replacement function, regexprep.

The example shown in this section searches a record containing contact
information belonging to a group of five friends. This information includes
each person’s name, telephone number, place of residence, and email address.
The goal is to extract specific information from one or more of the strings.

contacts = { ...

2-28

Regular Expressions

'Harry 287-625-7315 Columbus, OH hparker@hmail.com'; ...
'Janice 529-882-1759 Fresno, CA jan_stephens@horizon.net'; ...
'Mike 793-136-0975 Richmond, VA sue_and_mike@hmail.net'; ...
'Nadine 648-427-9947 Tampa, FL nadine_berry@horizon.net'; ...
'Jason 697-336-7728 Montrose, CO jason_blake@mymail.com'};

The first part of the example builds a regular expression that represents the
format of a standard email address. Using that expression, the example then
searches the information for the email address of one of the group of friends.
Contact information for Janice is in row 2 of the contacts cell array:

contacts{2}

ans =
Janice 529-882-1759 Fresno, CA jan_stephens@horizon.net

Step 1 — Identify Unique Patterns in the String
A typical email address is made up of standard components: the user’s
account name, followed by an @ sign, the name of the user’s internet service
provider (ISP), a dot (period), and the domain to which the ISP belongs. The
table below lists these components in the left column, and generalizes the
format of each component in the right column.

Unique patterns of an email address General description of each pattern

Start with the account name
jan_stephens . . .

One or more lowercase letters and underscores

Add ’@’
jan_stephens@ . . .

@ sign

Add the ISP
jan_stephens@horizon . . .

One or more lowercase letters, no underscores

Add a dot (period)
jan_stephens@horizon. . . .

Dot (period) character

Finish with the domain
jan_stephens@horizon.net

com or net

2-29

2 Program Components

Step 2 — Express Each Pattern as a Regular Expression
In this step, you translate the general formats derived in Step 1 into segments
of a regular expression. You then add these segments together to form the
entire expression.

The table below shows the generalized format descriptions of each character
pattern in the left-most column. (This was carried forward from the right
column of the table in Step 1.) The second column shows the operators or
metacharacters that represent the character pattern.

Description of each segment Pattern

One or more lowercase letters and underscores [a-z_]+

@ sign @

One or more lowercase letters, no underscores [a-z]+

Dot (period) character \.

com or net (com|net)

Assembling these patterns into one string gives you the complete expression:

email = '[a-z_]+@[a-z]+\.(com|net)';

Step 3 — Call the Appropriate Search Function
In this step, you use the regular expression derived in Step 2 to match an
email address for one of the friends in the group. Use the regexp function
to perform the search.

Here is the list of contact information shown earlier in this section. Each
person’s record occupies a row of the contacts cell array:

contacts = { ...
'Harry 287-625-7315 Columbus, OH hparker@hmail.com'; ...
'Janice 529-882-1759 Fresno, CA jan_stephens@horizon.net'; ...
'Mike 793-136-0975 Richmond, VA sue_and_mike@hmail.net'; ...
'Nadine 648-427-9947 Tampa, FL nadine_berry@horizon.net'; ...
'Jason 697-336-7728 Montrose, CO jason_blake@mymail.com'};

2-30

Regular Expressions

This is the regular expression that represents an email address, as derived
in Step 2:

email = '[a-z_]+@[a-z]+\.(com|net)';

Call the regexp function, passing row 2 of the contacts cell array and the
email regular expression. This returns the email address for Janice.

regexp(contacts{2}, email, 'match')

ans =
'jan_stephens@horizon.net'

MATLAB parses a string from left to right, “consuming” the string as it goes.
If matching characters are found, regexp records the location and resumes
parsing the string, starting just after the end of the most recent match.

Make the same call, but this time for the fifth person in the list:

regexp(contacts{5}, email, 'match')

ans =
'jason_blake@mymail.com'

You can also search for the email address of everyone in the list by using the
entire cell array for the input string argument:

regexp(contacts, email, 'match');

Operators and Characters
Regular expressions can contain characters, metacharacters, operators,
tokens, and flags that specify patterns to match, as described in these sections:

• “Metacharacters” on page 2-32

• “Character Representation” on page 2-33

• “Quantifiers” on page 2-34

• “Grouping Operators” on page 2-35

• “Anchors” on page 2-36

• “Lookaround Assertions” on page 2-36

2-31

2 Program Components

• “Logical and Conditional Operators” on page 2-37

• “Token Operators” on page 2-38

• “Dynamic Expressions” on page 2-40

• “Comments” on page 2-41

• “Search Flags” on page 2-41

Metacharacters
Metacharacters represent letters, letter ranges, digits, and space characters.
Use them to construct a generalized pattern of characters.

Metacharacter Description Example

. Any single character, including
white space

'..ain' matches sequences of five
consecutive characters that end with
'ain'.

[c1c2c3] Any character contained within the
brackets

'[rp]ain' matches 'rain' or 'pain'.

[^c1c2c3] Any character not contained within
the brackets

'[^rp]ain' matches all four-letter
sequences that end in 'ain', except
'rain' and 'pain'. For example, it
matches 'gain', 'lain', or 'vain'.

[c1-c2] Any character in the range of c1
through c2

'[A-G]' matches a single character in
the range of A through G.

\w Any alphabetic, numeric, or
underscore character. For English
character sets, \w is equivalent to
[a-zA-Z_0-9]

'\w*' identifies a word.

\W Any character that is not
alphabetic, numeric, or underscore.
For English character sets, \W is
equivalent to [^a-zA-Z_0-9]

'\W*' identifies a substring that is not
a word.

2-32

Regular Expressions

Metacharacter Description Example

\s Any white-space character;
equivalent to [\f\n\r\t\v]

'\w*n\s' matches words that end with
the letter n, followed by a white-space
character.

\S Any non-white-space character;
equivalent to [^ \f\n\r\t\v]

'\d\S'matches a numeric digit followed
by any non-white-space character.

\d Any numeric digit; equivalent to
[0-9]

'\d*' matches any number of
consecutive digits.

\D Any nondigit character; equivalent
to [^0-9]

'\w*\D\>' matches words that do not
end with a numeric digit.

\oN or \o{N} Character of octal value N '\o{40}' matches the space character,
defined by octal 40.

\xN or \x{N} Character of hexadecimal value N '\x2C' matches the comma character,
defined by hex 2C.

Character Representation

Operator Description

\a Alarm (beep)

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\v Vertical tab

\char Any character with special meaning in regular expressions
that you want to match literally (for example, use \\ to match
a single backslash)

2-33

2 Program Components

Quantifiers
Quantifiers specify the number of times a string pattern must occur in the
matching string.

Quantifier
Matches the expression when it
occurs... Example

expr* 0 or more times consecutively. '\w*' matches a word of any length.

expr? 0 times or 1 time. '\w*(\.m)?' matches words that
optionally end with the extension .m.

expr+ 1 or more times consecutively. '' matches an
 HTML tag when the file name
contains one or more characters.

expr{m,n} At least m times, but no more than n
times consecutively.

{0,1} is equivalent to ?.

'\S{4,8}' matches between four and
eight non-white-space characters.

expr{m,} At least m times consecutively.

{0,} and {1,} are equivalent to *
and +, respectively.

'' matches
an <a> HTML tag when the file name
contains one or more characters.

expr{n} Exactly n times consecutively.

Equivalent to {n,n}.

'\d{4}'matches four consecutive digits.

Quantifiers can appear in three modes, described in the following table. q
represents any of the quantifiers in the previous table.

Mode Description Example

exprq Greedy expression: match as many
characters as possible.

Given the string
'<tr><td><p>text</p></td>', the
expression '</?t.*>' matches all
characters between <tr and /td>:

'<tr><td><p>text</p></td>'

exprq? Lazy expression: match as few
characters as necessary.

Given the string
'<tr><td><p>text</p></td>', the
expression '</?t.*?>' ends each

2-34

Regular Expressions

Mode Description Example

match at the first occurrence of the
closing bracket (>):

'<tr>' '<td>' '</td>'

exprq+ Possessive expression: match as much
as possible, but do not rescan any
portions of the string.

Given the string
'<tr><td><p>text</p></td>', the
expression '</?t.*+>' does not return
any matches, because the closing
bracket is captured using .*, and is
not rescanned.

Grouping Operators
Grouping operators allow you to capture tokens, apply one operator to
multiple elements, or disable backtracking in a specific group.

Grouping
Operator Description Example

(expr) Group elements of the expression and
capture tokens.

'Joh?n\s(\w*)' captures a token that
contains the last name of any person
with the first name John or Jon.

(?:expr) Group, but do not capture tokens. '(?:[aeiou][^aeiou]){2}' matches
two consecutive patterns of a vowel
followed by a nonvowel, such as
'anon'.

Without grouping,
'[aeiou][^aeiou]{2}'matches
a vowel followed by two nonvowels.

2-35

2 Program Components

Grouping
Operator Description Example

(?>expr) Group atomically. Do not backtrack
within the group to complete the
match, and do not capture tokens.

'A(?>.*)Z' does not match 'AtoZ',
although 'A(?:.*)Z' does. Using the
atomic group, Z is captured using .*
and is not rescanned.

(expr1|expr2) Match expression expr1 or expression
expr2.

If there is a match with expr1, then
expr2 is ignored.

You can include ?: or ?> after the
opening parenthesis to suppress
tokens or group atomically.

'(let|tel)\w+' matches words in a
string that start with let or tel.

Anchors
Anchors in the expression match the beginning or end of the string or word.

Anchor Matches the... Example

^expr Beginning of the input string. '^M\w*' matches a word starting with
M at the beginning of the string.

expr$ End of the input string. '\w*m$' matches words ending with m
at the end of the string.

\<expr Beginning of a word. '\<n\w*' matches any words starting
with n.

expr\> End of a word. '\w*e\>' matches any words ending
with e.

Lookaround Assertions
Lookaround assertions look for string patterns that immediately precede or
follow the intended match, but are not part of the match.

The pointer remains at the current location, and characters that correspond
to the test expression are not captured or discarded. Therefore, lookahead
assertions can match overlapping character groups.

2-36

Regular Expressions

Lookaround
Assertion Description Example

expr(?=test) Look ahead for characters that match
test.

'\w*(?=ing)' matches strings that
are followed by ing, such as 'Fly' and
'fall' in the input string 'Flying,
not falling.'

expr(?!test) Look ahead for characters that do not
match test.

'i(?!ng)' matches instances of the
letter i that are not followed by ng.

(?<=test)expr Look behind for characters that
match test..

'(?<=re)\w*' matches strings that
follow 're', such as 'new', 'use', and
'cycle' in the input string 'renew,
reuse, recycle'

(?<!test)expr Look behind for characters that do
not match test.

'(?<!\d)(\d)(?!\d)' matches
single-digit numbers (digits that do
not precede or follow other digits).

If you specify a lookahead assertion before an expression, the operation is
equivalent to a logical AND.

Operation Description Example

(?=test)expr Match both test and expr. '(?=[a-z])[^aeiou]' matches
consonants.

(?!test)expr Match expr and do not match test. '(?![aeiou])[a-z]' matches
consonants.

For more information, see “Lookahead Assertions in Regular Expressions”
on page 2-43.

Logical and Conditional Operators
Logical and conditional operators allow you to test the state of a given
condition, and then use the outcome to determine which string, if any, to
match next. These operators support logical OR and if or if/else conditions.
(For AND conditions, see “Lookaround Assertions” on page 2-36.)

2-37

2 Program Components

Conditions can be tokens, lookaround assertions, or dynamic expressions of
the form (?@cmd). Dynamic expressions must return a logical or numeric
value.

Conditional Operator Description Example

expr1|expr2 Match expression expr1 or
expression expr2.

If there is a match with expr1,
then expr2 is ignored.

'(let|tel)\w+' matches words
in a string that start with let or
tel.

(?(cond)expr) If condition cond is true, then
match expr.

'(?(?@ispc)[A-Z]:\\)' matches
a drive name, such as C:\, when
run on a Windows system.

(?(cond)expr1|expr2) If condition cond is true, then
match expr1. Otherwise, match
expr2.

'Mr(s?)\..*?(?(1)her|his)
\w*' matches strings that include
her when the string begins with
Mrs, or that include his when the
string begins with Mr.

Token Operators
Tokens are portions of the matched text that you define by enclosing part
of the regular expression in parentheses. You can refer to a token by its
sequence in the string (an ordinal token), or assign names to tokens for easier
code maintenance and readable output.

Ordinal Token
Operator Description Example

(expr) Capture in a token the characters
that match the enclosed
expression.

'Joh?n\s(\w*)' captures a token
that contains the last name of any
person with the first name John
or Jon.

\N Match the Nth token. '<(\w+).*>.*</\1>' captures
tokens for HTML tags, such

2-38

Regular Expressions

Ordinal Token
Operator Description Example

as 'title' from the string
'<title>Some text</title>'.

(?(N)expr1|expr2) If the Nth token is found, then
match expr1. Otherwise, match
expr2.

'Mr(s?)\..*?(?(1)her|his)
\w*' matches strings that include
her when the string begins with
Mrs, or that include his when the
string begins with Mr.

Named Token
Operator Description Example

(?<name>expr) Capture in a named token
the characters that match the
enclosed expression.

'(?<month>\d+)-(?<day>\d+)-(?<yr>\d+)'
creates named tokens for the
month, day, and year in an input
date string of the form mm-dd-yy.

\k<name> Match the token referred to by
name.

'<(?<tag>\w+).*>.*</\k<tag>>'
captures tokens for HTML tags,
such as 'title' from the string
'<title>Some text</title>'.

(?(name)expr1|expr2) If the named token is found, then
match expr1. Otherwise, match
expr2.

'Mr(?<sex>s?)\..*?(?(sex)her|his)
\w*' matches strings that include
her when the string begins with
Mrs, or that include his when the
string begins with Mr.

Note If an expression has nested parentheses, MATLAB captures tokens
that correspond to the outermost set of parentheses. For example, given the
search pattern '(and(y|rew))', MATLAB creates a token for 'andrew' but
not for 'y' or 'rew'.

For more information, see “Tokens in Regular Expressions” on page 2-46.

2-39

2 Program Components

Dynamic Expressions
Dynamic expressions allow you to execute a MATLAB command or a regular
expression to determine the text to match.

The parentheses that enclose dynamic expressions do not create a capturing
group.

Operator Description Example

(??expr) Parse expr and include the resulting
string in the match expression.

When parsed, expr must correspond
to a complete, valid regular
expression. Dynamic expressions
that use the backslash escape
character (\) require two
backslashes: one for the initial
parsing of expr, and one for the
complete match.

'^(\d+)((??\\w{$1}))'
determines how many characters
to match by reading a digit at
the beginning of the string. The
dynamic expression is enclosed in
a second set of parentheses so that
the resulting match is captured in
a token. For instance, matching
'5XXXXX' captures tokens for '5'
and 'XXXXX'.

(??@cmd) Execute the MATLAB command
represented by cmd, and include the
string returned by the command in
the match expression.

'(.{2,}).?(??@fliplr($1))'
finds palindromes that are at
least four characters long, such as
'abba'.

(?@cmd) Execute the MATLAB command
represented by cmd, but discard
any output the command returns.
(Helpful for diagnosing regular
expressions.)

'\w*?(\w)(?@disp($1))\1\w*'
matches words that include double
letters (such as pp), and displays
intermediate results.

Within dynamic expressions, use the following operators to define replacement
strings.

Replacement
String Operator

Description

$& or $0 Portion of the input string that is currently a match

$` Portion of the input string that precedes the current
match

2-40

Regular Expressions

Replacement
String Operator

Description

$' Portion of the input string that follows the current
match (use $'' to represent the string $')

$N Nth token

$<name> Named token

${cmd} String returned when MATLAB executes the command,
cmd

For more information, see “Dynamic Regular Expressions” on page 2-52.

Comments
The comment operator enables you to insert comments into your code to make
it more maintainable. The text of the comment is ignored by MATLAB when
matching against the input string.

Characters Description Example

(?#comment) Insert a comment in the regular
expression. The comment text is
ignored when matching the input
string.

'(?# Initial digit)\<\d\w+'
includes a comment, and matches
words that begin with a number.

Search Flags
Search flags modify the behavior for matching expressions.

Flag Description

(?-i) Match letter case (default for regexp and regexprep).

(?i) Do not match letter case (default for regexpi).

(?s) Match dot (.) in the pattern string with any character
(default).

(?-s) Match dot in the pattern with any character that is not
a newline character.

2-41

2 Program Components

Flag Description

(?-m) Match the ^ and $ metacharacters at the beginning and
end of a string (default).

(?m) Match the ^ and $ metacharacters at the beginning and
end of a line.

(?-x) Include space characters and comments when matching
(default).

(?x) Ignore space characters and comments when matching.
Use '\ ' and '\#' to match space and # characters.

The expression that the flag modifies can appear either after the parentheses,
such as

(?i)\w*

or inside the parentheses and separated from the flag with a colon (:), such as

(?i:\w*)

The latter syntax allows you to change the behavior for part of a larger
expression.

See Also regexp | regexpi | regexprep | regexptranslate

Concepts • “Lookahead Assertions in Regular Expressions” on page 2-43
• “Tokens in Regular Expressions” on page 2-46
• “Dynamic Regular Expressions” on page 2-52

2-42

Lookahead Assertions in Regular Expressions

Lookahead Assertions in Regular Expressions

In this section...

“Lookahead Assertions” on page 2-43

“Overlapping Matches” on page 2-44

“Logical AND Conditions” on page 2-44

Lookahead Assertions
There are two types of lookaround assertions for regular expressions:
lookahead and lookbehind. In both cases, the assertion is a condition that
must be satisfied to return a match to the expression.

A lookahead assertion has the form (?=test) and can appear anywhere in a
regular expression. MATLAB looks ahead of the current location in the string
for the test condition. If MATLAB matches the test condition, it continues
processing the rest of the expression to find a match.

For example, look ahead in a path string to find the name of the folder that
contains a program file (in this case, fileread.m).

str = which('fileread')

str =
matlabroot\toolbox\matlab\iofun\fileread.m

regexp(str,'\w+(?=\\\w+\.[mp])','match')

ans =
'iofun'

The match expression, \w+, searches for one or more alphanumeric or
underscore characters. Each time regexp finds a string that matches this
condition, it looks ahead for a backslash (specified with two backslashes, \\),
followed by a file name (\w+) with an .m or .p extension (\.[mp]). The regexp
function returns the match that satisfies the lookahead condition, which is
the folder name iofun.

2-43

2 Program Components

Overlapping Matches
Lookahead assertions do not consume any characters in the string. As a
result, you can use them to find overlapping character sequences.

For example, use lookahead to find every sequence of six nonwhitespace
characters in a string by matching initial characters that precede five
additional characters:

string = 'Locate several 6-char. phrases';
startIndex = regexpi(string,'\S(?=\S{5})')

startIndex =
1 8 9 16 17 24 25

The starting indices correspond to these phrases:

Locate severa everal 6-char -char. phrase hrases

Without the lookahead operator, MATLAB parses a string from left to right,
consuming the string as it goes. If matching characters are found, regexp
records the location and resumes parsing the string from the location of the
most recent match. There is no overlapping of characters in this process.

string = 'Locate several 6-char. phrases';
startIndex = regexpi(string,'\S{6}')

startIndex =
1 8 16 24

The starting indices correspond to these phrases:

Locate severa 6-char phrase

Logical AND Conditions
Another way to use a lookahead operation is to perform a logical AND between
two conditions. This example initially attempts to locate all lowercase
consonants in a text string. The text string is the first 50 characters of the
help for the normest function:

helptext = help('normest');
str = helptext(1:50)

2-44

Lookahead Assertions in Regular Expressions

str =
NORMEST Estimate the matrix 2-norm.

NORMEST(S

Merely searching for non-vowels ([^aeiou]) does not return the expected
answer, as the output includes capital letters, space characters, and
punctuation:

c = regexp(str,'[^aeiou]','match')

c =
Columns 1 through 14

' ' 'N' 'O' 'R' 'M' 'E' 'S' 'T' ' '
'E' 's' 't' 'm' 't'

...

Try this again, using a lookahead operator to create the following AND
condition:

(lowercase letter) AND (not a vowel)

This time, the result is correct:

c = regexp(str,'(?=[a-z])[^aeiou]','match')

c =
's' 't' 'm ' 't' 't' 'h' 'm' 't' 'r' 'x'

'n' 'r' 'm'

Note that when using a lookahead operator to perform an AND, you need to
place the match expression expr after the test expression test:

(?=test)expr or (?!test)expr

See Also regexp | regexpi | regexprep

Concepts • “Regular Expressions” on page 2-26

2-45

2 Program Components

Tokens in Regular Expressions

In this section...

“Introduction” on page 2-46

“Multiple Tokens” on page 2-48

“Unmatched Tokens” on page 2-48

“Tokens in Replacement Strings” on page 2-50

“Named Capture” on page 2-50

Introduction
Parentheses used in a regular expression not only group elements of that
expression together, but also designate any matches found for that group as
tokens. You can use tokens to match other parts of the same string. One
advantage of using tokens is that they remember what they matched, so you
can recall and reuse matched text in the process of searching or replacing.

Each token in the expression is assigned a number, starting from 1, going
from left to right. To make a reference to a token later in the expression,
refer to it using a backslash followed by the token number. For example,
when referencing a token generated by the third set of parentheses in the
expression, use \3.

As a simple example, if you wanted to search for identical sequential letters
in a string, you could capture the first letter as a token and then search for a
matching character immediately afterwards. In the expression shown below,
the (\S) phrase creates a token whenever regexpmatches any nonwhitespace
character in the string. The second part of the expression, '\1', looks for a
second instance of the same character immediately following the first:

poestr = ['While I nodded, nearly napping, ' ...
'suddenly there came a tapping,'];

[mat,tok,ext] = regexp(poestr, '(\S)\1', 'match', ...
'tokens', 'tokenExtents');

mat

2-46

Tokens in Regular Expressions

mat =
'dd' 'pp' 'dd' 'pp'

The tokens returned in cell array tok are:

'd', 'p', 'd', 'p'

Starting and ending indices for each token in the input string poestr are:

11 11, 26 26, 35 35, 57 57

For another example, capture pairs of matching HTML tags (e.g., <a> and
) and the text between them. The expression used for this example is

expr = '<(\w+).*?>.*?</\1>';

The first part of the expression, '<(\w+)', matches an opening bracket (<)
followed by one or more alphabetic, numeric, or underscore characters. The
enclosing parentheses capture token characters following the opening bracket.

The second part of the expression, '.*?>.*?', matches the remainder of this
HTML tag (characters up to the >), and any characters that may precede the
next opening bracket.

The last part, '</\1>', matches all characters in the ending HTML tag. This
tag is composed of the sequence </tag>, where tag is whatever characters
were captured as a token.

hstr = '<!comment>Default
';
expr = '<(\w+).*?>.*?</\1>';

[mat,tok] = regexp(hstr, expr, 'match', 'tokens');
mat{:}

ans =

ans =
Default

tok{:}

2-47

2 Program Components

ans =
'a'

ans =
'b'

Multiple Tokens
Here is an example of how tokens are assigned values. Suppose that you
are going to search the following text:

andy ted bob jim andrew andy ted mark

You choose to search the above text with the following search pattern:

and(y|rew)|(t)e(d)

This pattern has three parenthetical expressions that generate tokens. When
you finally perform the search, the following tokens are generated for each
match.

Match Token 1 Token 2

andy y

ted t d

andrew rew

andy y

ted t d

Only the highest level parentheses are used. For example, if the search
pattern and(y|rew) finds the text andrew, token 1 is assigned the value rew.
However, if the search pattern (and(y|rew)) is used, token 1 is assigned
the value andrew.

Unmatched Tokens
For those tokens specified in the regular expression that have no match in the
string being evaluated, regexp and regexpi return an empty string ('') as
the token output, and an extent that marks the position in the string where
the token was expected.

2-48

Tokens in Regular Expressions

The example shown here executes regexp on the path string str returned
from the MATLAB tempdir function. The regular expression expr includes
six token specifiers, one for each piece of the path string. The third specifier
[a-z]+ has no match in the string because this part of the path, Profiles,
begins with an uppercase letter:

str = tempdir

str =
C:\WINNT\Profiles\bpascal\LOCALS~1\Temp\

expr = ['([A-Z]:)\\(WINNT)\\([a-z]+)?.*\\' ...
'([a-z]+)\\([A-Z]+~\d)\\(Temp)\\'];

[tok ext] = regexp(str, expr, 'tokens', 'tokenExtents');

When a token is not found in a string, MATLAB still returns a token string
and token extent. The returned token string is an empty character string
(''). The first number of the extent is the string index that marks where the
token was expected, and the second number of the extent is equal to one
less than the first.

In the case of this example, the empty token is the third specified in the
expression, so the third token string returned is empty:

tok{:}

ans =
'C:' 'WINNT' '' 'bpascal' 'LOCALS~1' 'Temp'

The third token extent returned in the variable ext has the starting index
set to 10, which is where the nonmatching substring, Profiles, begins in the
string. The ending extent index is set to one less than the starting index, or 9:

ext{:}

ans =
1 2
4 8

10 9
19 25
27 34

2-49

2 Program Components

36 39

Tokens in Replacement Strings
When using tokens in a replacement string, reference them using $1, $2, etc.
instead of \1, \2, etc. This example captures two tokens and reverses their
order. The first, $1, is 'Norma Jean' and the second, $2, is 'Baker'. Note
that regexprep returns the modified string, not a vector of starting indices.

regexprep('Norma Jean Baker', '(\w+\s\w+)\s(\w+)', '$2, $1')

ans =
Baker, Norma Jean

Named Capture
If you use a lot of tokens in your expressions, it may be helpful to assign them
names rather than having to keep track of which token number is assigned
to which token.

When referencing a named token within the expression, use the syntax
\k<name> instead of the numeric \1, \2, etc.:

poestr = ['While I nodded, nearly napping, ' ...
'suddenly there came a tapping,'];

regexp(poestr, '(?<anychar>.)\k<anychar>', 'match')

ans =
'dd' 'pp' 'dd' 'pp'

Named tokens can also be useful in labeling the output from the MATLAB
regular expression functions. This is especially true when you are processing
numerous strings.

For example, parse different pieces of street addresses from several strings. A
short name is assigned to each token in the expression string:

str1 = '134 Main Street, Boulder, CO, 14923';
str2 = '26 Walnut Road, Topeka, KA, 25384';
str3 = '847 Industrial Drive, Elizabeth, NJ, 73548';

2-50

Tokens in Regular Expressions

p1 = '(?<adrs>\d+\s\S+\s(Road|Street|Avenue|Drive))';
p2 = '(?<city>[A-Z][a-z]+)';
p3 = '(?<state>[A-Z]{2})';
p4 = '(?<zip>\d{5})';

expr = [p1 ', ' p2 ', ' p3 ', ' p4];

As the following results demonstrate, you can make your output easier to
work with by using named tokens:

loc1 = regexp(str1, expr, 'names')

loc1 =
adrs: '134 Main Street'
city: 'Boulder'

state: 'CO'
zip: '14923'

loc2 = regexp(str2, expr, 'names')

loc2 =
adrs: '26 Walnut Road'
city: 'Topeka'

state: 'KA'
zip: '25384'

loc3 = regexp(str3, expr, 'names')

loc3 =
adrs: '847 Industrial Drive'
city: 'Elizabeth'

state: 'NJ'
zip: '73548'

See Also regexp | regexpi | regexprep

Concepts • “Regular Expressions” on page 2-26

2-51

2 Program Components

Dynamic Regular Expressions

In this section...

“Introduction” on page 2-52

“Dynamic Match Expressions — (??expr)” on page 2-53

“Commands That Modify the Match Expression — (??@cmd)” on page 2-54

“Commands That Serve a Functional Purpose — (?@cmd)” on page 2-55

“Commands in Replacement Expressions — ${cmd}” on page 2-58

Introduction
In a dynamic expression, you can make the pattern that you want regexp to
match dependent on the content of the input string. In this way, you can
more closely match varying input patterns in the string being parsed. You
can also use dynamic expressions in replacement strings for use with the
regexprep function. This gives you the ability to adapt the replacement text
to the parsed input.

You can include any number of dynamic expressions in the match_expr or
replace_expr arguments of these commands:

regexp(string, match_expr)
regexpi(string, match_expr)
regexprep(string, match_expr, replace_expr)

As an example of a dynamic expression, the following regexprep command
correctly replaces the term internationalization with its abbreviated form,
i18n. However, to use it on a different term such as globalization, you have
to use a different replacement expression:

match_expr = '(^\w)(\w*)(\w$)';

replace_expr1 = '$118$3';
regexprep('internationalization', match_expr, replace_expr1)

ans =
i18n

2-52

Dynamic Regular Expressions

replace_expr2 = '$111$3';
regexprep('globalization', match_expr, replace_expr2)

ans =
g11n

Using a dynamic expression ${num2str(length($2))} enables you to base
the replacement expression on the input string so that you do not have to
change the expression each time. This example uses the dynamic replacement
syntax ${cmd}.

match_expr = '(^\w)(\w*)(\w$)';
replace_expr = '1{num2str(length($2))}$3';

regexprep('internationalization', match_expr, replace_expr)

ans =
i18n

regexprep('globalization', match_expr, replace_expr)

ans =
g11n

When parsed, a dynamic expression must correspond to a complete, valid
regular expression. In addition, dynamic match expressions that use the
backslash escape character (\) require two backslashes: one for the initial
parsing of the expression, and one for the complete match. The parentheses
that enclose dynamic expressions do not create a capturing group.

There are three forms of dynamic expressions that you can use in match
expressions, and one form for replacement expressions, as described in the
following sections

Dynamic Match Expressions — (??expr)
The (??expr) operator parses expression expr, and inserts the results back
into the match expression. MATLAB then evaluates the modified match
expression.

2-53

2 Program Components

Here is an example of the type of expression that you can use with this
operator:

str = {'5XXXXX', '8XXXXXXXX', '1X'};
regexp(str, '^(\d+)(??X{$1})$', 'match', 'once');

The purpose of this particular command is to locate a series of X characters
in each of the strings stored in the input cell array. Note however that the
number of Xs varies in each string. If the count did not vary, you could use the
expression X{n} to indicate that you want to match n of these characters. But,
a constant value of n does not work in this case.

The solution used here is to capture the leading count number (e.g., the 5 in
the first string of the cell array) in a token, and then to use that count in a
dynamic expression. The dynamic expression in this example is (??X{$1}),
where $1 is the value captured by the token \d+. The operator {$1} makes a
quantifier of that token value. Because the expression is dynamic, the same
pattern works on all three of the input strings in the cell array. With the first
input string, regexp looks for five X characters; with the second, it looks for
eight, and with the third, it looks for just one:

regexp(str, '^(\d+)(??X{$1})$', 'match', 'once')

ans =
'5XXXXX' '8XXXXXXXX' '1X'

Commands That Modify the Match Expression —
(??@cmd)
MATLAB uses the (??@cmd) operator to include the results of a MATLAB
command in the match expression. This command must return a string that
can be used within the match expression.

For example, use the dynamic expression (??@flilplr($1)) to locate a
palindrome string, “Never Odd or Even”, that has been embedded into a
larger string.

First, create the input string. Make sure that all letters are lowercase, and
remove all nonword characters.

str = lower(...

2-54

Dynamic Regular Expressions

'Find the palindrome Never Odd or Even in this string');

str = regexprep(str, '\W*', '')

str =
findthepalindromeneveroddoreveninthisstring

Locate the palindrome within the string using the dynamic expression:

palstr = regexp(str, '(.{3,}).?(??@fliplr($1))', 'match')

str =
'neveroddoreven'

The dynamic expression reverses the order of the letters that make up the
string, and then attempts to match as much of the reversed-order string as
possible. This requires a dynamic expression because the value for $1 relies
on the value of the token (.{3,}).

Dynamic expressions in MATLAB have access to the currently active
workspace. This means that you can change any of the functions or variables
used in a dynamic expression just by changing variables in the workspace.
Repeat the last command of the example above, but this time define the
function to be called within the expression using a function handle stored in
the base workspace:

fun = @fliplr;

palstr = regexp(str, '(.{3,}).?(??@fun($1))', 'match')

palstr =
'neveroddoreven'

Commands That Serve a Functional Purpose —
(?@cmd)
The (?@cmd) operator specifies a MATLAB command that regexp or
regexprep is to run while parsing the overall match expression. Unlike the
other dynamic expressions in MATLAB, this operator does not alter the
contents of the expression it is used in. Instead, you can use this functionality
to get MATLAB to report just what steps it is taking as it parses the contents

2-55

2 Program Components

of one of your regular expressions. This functionality can be useful in
diagnosing your regular expressions.

The following example parses a word for zero or more characters followed by
two identical characters followed again by zero or more characters:

regexp('mississippi', '\w*(\w)\1\w*', 'match')

ans =
'mississippi'

To track the exact steps that MATLAB takes in determining the match, the
example inserts a short script (?@disp($1)) in the expression to display
the characters that finally constitute the match. Because the example uses
greedy quantifiers, MATLAB attempts to match as much of the string as
possible. So, even though MATLAB finds a match toward the beginning of the
string, it continues to look for more matches until it arrives at the very end of
the string. From there, it backs up through the letters i then p and the next
p, stopping at that point because the match is finally satisfied:

regexp('mississippi', '\w*(\w)(?@disp($1))\1\w*', 'match')

i
p
p

ans =
'mississippi'

Now try the same example again, this time making the first quantifier lazy
(*?). Again, MATLAB makes the same match:

regexp('mississippi', '\w*?(\w)\1\w*', 'match')

ans =
'mississippi'

But by inserting a dynamic script, you can see that this time, MATLAB has
matched the string quite differently. In this case, MATLAB uses the very first
match it can find, and does not even consider the rest of the string:

regexp('mississippi', '\w*?(\w)(?@disp($1))\1\w*', 'match')

2-56

Dynamic Regular Expressions

m
i
s

ans =
'mississippi'

To demonstrate how versatile this type of dynamic expression can be, consider
the next example that progressively assembles a cell array as MATLAB
iteratively parses the input string. The (?!) operator found at the end of the
expression is actually an empty lookahead operator, and forces a failure at
each iteration. This forced failure is necessary if you want to trace the steps
that MATLAB is taking to resolve the expression.

MATLAB makes a number of passes through the input string, each time
trying another combination of letters to see if a fit better than last match can
be found. On any passes in which no matches are found, the test results in
an empty string. The dynamic script (?@if(~isempty($&))) serves to omit
these strings from the matches cell array:

matches = {};
expr = ['(Euler\s)?(Cauchy\s)?(Boole)?(?@if(~isempty($&)),' ...

'matches{end+1}=$&;end)(?!)'];

regexp('Euler Cauchy Boole', expr);

matches

matches =
'Euler Cauchy Boole' 'Euler Cauchy ' 'Euler '

'Cauchy Boole' 'Cauchy ' 'Boole'

The operators $& (or the equivalent $0), $`, and $' refer to that part of the
input string that is currently a match, all characters that precede the current
match, and all characters to follow the current match, respectively. These
operators are sometimes useful when working with dynamic expressions,
particularly those that employ the (?@cmd) operator.

This example parses the input string looking for the letter g. At each iteration
through the string, regexp compares the current character with g, and not

2-57

2 Program Components

finding it, advances to the next character. The example tracks the progress of
scan through the string by marking the current location being parsed with a
^ character.

(The $` and $· operators capture that part of the string that precedes and
follows the current parsing location. You need two single-quotation marks
($'') to express the sequence $· when it appears within a string.)

str = 'abcdefghij';
expr = '(?@disp(sprintf(''starting match: [%s^%s]'',$`,$'')))g';

regexp(str, expr, 'once');

starting match: [^abcdefghij]
starting match: [a^bcdefghij]
starting match: [ab^cdefghij]
starting match: [abc^defghij]
starting match: [abcd^efghij]
starting match: [abcde^fghij]
starting match: [abcdef^ghij]

Commands in Replacement Expressions — ${cmd}
The ${cmd} operator modifies the contents of a regular expression replacement
string, making this string adaptable to parameters in the input string that
might vary from one use to the next. As with the other dynamic expressions
used in MATLAB, you can include any number of these expressions within
the overall replacement expression.

In the regexprep call shown here, the replacement string is
'${convertMe($1,$2)}'. In this case, the entire replacement string is a
dynamic expression:

regexprep('This highway is 125 miles long', ...
'(\d+\.?\d*)\W(\w+)', '${convertMe($1,$2)}');

The dynamic expression tells MATLAB to execute a function named
convertMe using the two tokens (\d+\.?\d*) and (\w+), derived from the
string being matched, as input arguments in the call to convertMe. The
replacement string requires a dynamic expression because the values of $1
and $2 are generated at runtime.

2-58

Dynamic Regular Expressions

The following example defines the file named convertMe that converts
measurements from imperial units to metric.

function valout = convertMe(valin, units)
switch(units)

case 'inches'
fun = @(in)in .* 2.54; uout = 'centimeters';

case 'miles'
fun = @(mi)mi .* 1.6093; uout = 'kilometers';

case 'pounds'
fun = @(lb)lb .* 0.4536; uout = 'kilograms';

case 'pints'
fun = @(pt)pt .* 0.4731; uout = 'litres';

case 'ounces'
fun = @(oz)oz .* 28.35; uout = 'grams';

end
val = fun(str2num(valin));
valout = [num2str(val) ' ' uout];
end

At the command line, call the convertMe function from regexprep, passing in
values for the quantity to be converted and name of the imperial unit:

regexprep('This highway is 125 miles long', ...
'(\d+\.?\d*)\W(\w+)', '${convertMe($1,$2)}')

ans =
This highway is 201.1625 kilometers long

regexprep('This pitcher holds 2.5 pints of water', ...
'(\d+\.?\d*)\W(\w+)', '${convertMe($1,$2)}')

ans =
This pitcher holds 1.1828 litres of water

regexprep('This stone weighs about 10 pounds', ...
'(\d+\.?\d*)\W(\w+)', '${convertMe($1,$2)}')

ans =
This stone weighs about 4.536 kilograms

2-59

2 Program Components

As with the (??@) operator discussed in an earlier section, the ${ } operator
has access to variables in the currently active workspace. The following
regexprep command uses the array A defined in the base workspace:

A = magic(3)

A =
8 1 6
3 5 7
4 9 2

regexprep('The columns of matrix _nam are _val', ...
{'_nam', '_val'}, ...
{'A', '${sprintf(''%d%d%d '', A)}'})

ans =
The columns of matrix A are 834 159 672

See Also regexp | regexpi | regexprep

Concepts • “Regular Expressions” on page 2-26

2-60

Comma-Separated Lists

Comma-Separated Lists

In this section...

“What Is a Comma-Separated List?” on page 2-61

“Generating a Comma-Separated List” on page 2-61

“Assigning Output from a Comma-Separated List” on page 2-63

“Assigning to a Comma-Separated List” on page 2-64

“How to Use the Comma-Separated Lists” on page 2-65

“Fast Fourier Transform Example” on page 2-67

What Is a Comma-Separated List?
Typing in a series of numbers separated by commas gives you what is called a
comma-separated list. The MATLAB software returns each value individually:

1, 2, 3
ans =

1
ans =

2
ans =

3

Such a list, by itself, is not very useful. But when used with large and
more complex data structures like MATLAB structures and cell arrays, the
comma-separated list can enable you to simplify your MATLAB code.

Generating a Comma-Separated List
This section describes how to generate a comma-separated list from either a
cell array or a MATLAB structure.

Generating a List from a Cell Array
Extracting multiple elements from a cell array yields a comma-separated list.
Given a 4-by-6 cell array as shown here

2-61

2 Program Components

C = cell(4, 6);
for k = 1:24, C{k} = k * 2; end

C
C =

[2] [10] [18] [26] [34] [42]
[4] [12] [20] [28] [36] [44]
[6] [14] [22] [30] [38] [46]
[8] [16] [24] [32] [40] [48]

extracting the fifth column generates the following comma-separated list:

C{:, 5}
ans =

34
ans =

36
ans =

38
ans =

40

This is the same as explicitly typing

C{1, 5}, C{2, 5}, C{3, 5}, C{4, 5}

Generating a List from a Structure
For structures, extracting a field of the structure that exists across one of its
dimensions yields a comma-separated list.

Start by converting the cell array used above into a 4-by-1 MATLAB structure
with six fields: f1 through f6. Read field f5 for all rows and MATLAB returns
a comma-separated list:

S = cell2struct(C, {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}, 2);

S.f5
ans =

34
ans =

2-62

Comma-Separated Lists

36
ans =

38
ans =

40

This is the same as explicitly typing

S(1).f5, S(2).f5, S(3).f5, S(4).f5

Assigning Output from a Comma-Separated List
You can assign any or all consecutive elements of a comma-separated list to
variables with a simple assignment statement. Using the cell array C from
the previous section, assign the first row to variables c1 through c6:

C = cell(4, 6);
for k = 1:24, C{k} = k * 2; end

[c1 c2 c3 c4 c5 c6] = C{1,1:6};

c5
c5 =

34

If you specify fewer output variables than the number of outputs returned by
the expression, MATLAB assigns the first N outputs to those N variables, and
then discards any remaining outputs. In this next example, MATLAB assigns
C{1,1:3} to the variables c1, c2, and c3, and then discards C{1,4:6}:

[c1 c2 c3] = C{1,1:6};

You can assign structure outputs in the same manner:

S = cell2struct(C, {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}, 2);

[sf1 sf2 sf3] = S.f5;

sf3
sf3 =

38

2-63

2 Program Components

You also can use the deal function for this purpose.

Assigning to a Comma-Separated List
The simplest way to assign multiple values to a comma-separated list is to
use the deal function. This function distributes all of its input arguments to
the elements of a comma-separated list.

This example initializes a comma-separated list to a set of vectors in a cell
array, and then uses deal to overwrite each element in the list:

c{1} = [31 07]; c{2} = [03 78];

c{:}
ans =

31 7
ans =

3 78

[c{:}] = deal([10 20],[14 12]);

c{:}
ans =

10 20
ans =

14 12

This example does the same as the one above, but with a comma-separated
list of vectors in a structure field:

s(1).field1 = [31 07]; s(2).field1 = [03 78];

s.field1
ans =

31 7
ans =

3 78

2-64

Comma-Separated Lists

[s.field1] = deal([10 20],[14 12]);

s.field1
ans =

10 20
ans =

14 12

How to Use the Comma-Separated Lists
Common uses for comma-separated lists are

• “Constructing Arrays” on page 2-65

• “Displaying Arrays” on page 2-66

• “Concatenation” on page 2-66

• “Function Call Arguments” on page 2-66

• “Function Return Values” on page 2-67

The following sections provide examples of using comma-separated lists with
cell arrays. Each of these examples applies to MATLAB structures as well.

Constructing Arrays
You can use a comma-separated list to enter a series of elements when
constructing a matrix or array. Note what happens when you insert a list of
elements as opposed to adding the cell itself.

When you specify a list of elements with C{:, 5}, MATLAB inserts the four
individual elements:

A = {'Hello', C{:, 5}, magic(4)}
A =

'Hello' [34] [36] [38] [40] [4x4 double]

When you specify the C cell itself, MATLAB inserts the entire cell array:

A = {'Hello', C, magic(4)}
A =

'Hello' {4x6 cell} [4x4 double]

2-65

2 Program Components

Displaying Arrays
Use a list to display all or part of a structure or cell array:

A{:}
ans =

Hello
ans =

34
ans =

36
ans =

38
.
.
.

Concatenation
Putting a comma-separated list inside square brackets extracts the specified
elements from the list and concatenates them:

A = [C{:, 5:6}]
A =

34 36 38 40 42 44 46 48

whos A
Name Size Bytes Class

A 1x8 64 double array

Function Call Arguments
When writing the code for a function call, you enter the input arguments as a
list with each argument separated by a comma. If you have these arguments
stored in a structure or cell array, then you can generate all or part of the
argument list from the structure or cell array instead. This can be especially
useful when passing in variable numbers of arguments.

2-66

Comma-Separated Lists

This example passes several attribute-value arguments to the plot function:

X = -pi:pi/10:pi;
Y = tan(sin(X)) - sin(tan(X));

C{1,1} = 'LineWidth'; C{2,1} = 2;
C{1,2} = 'MarkerEdgeColor'; C{2,2} = 'k';
C{1,3} = 'MarkerFaceColor'; C{2,3} = 'g';

plot(X, Y, '--rs', C{:})

Function Return Values
MATLAB functions can also return more than one value to the caller. These
values are returned in a list with each value separated by a comma. Instead
of listing each return value, you can use a comma-separated list with a
structure or cell array. This becomes more useful for those functions that
have variable numbers of return values.

This example returns three values to a cell array:

C = cell(1, 3);
[C{:}] = fileparts('work/mytests/strArrays.mat')
C =

'work/mytests' 'strArrays' '.mat'

Fast Fourier Transform Example
The fftshift function swaps the left and right halves of each dimension of
an array. For a simple vector such as [0 2 4 6 8 10] the output would be
[6 8 10 0 2 4]. For a multidimensional array, fftshift performs this
swap along each dimension.

fftshift uses vectors of indices to perform the swap. For the vector shown
above, the index [1 2 3 4 5 6] is rearranged to form a new index [4 5 6 1
2 3]. The function then uses this index vector to reposition the elements. For
a multidimensional array, fftshift must construct an index vector for each
dimension. A comma-separated list makes this task much simpler.

Here is the fftshift function:

function y = fftshift(x)

2-67

2 Program Components

numDims = ndims(x);
idx = cell(1, numDims);

for k = 1:numDims
m = size(x, k);
p = ceil(m/2);
idx{k} = [p+1:m 1:p];
end

y = x(idx{:});

The function stores the index vectors in cell array idx. Building this cell array
is relatively simple. For each of the N dimensions, determine the size of that
dimension and find the integer index nearest the midpoint. Then, construct a
vector that swaps the two halves of that dimension.

By using a cell array to store the index vectors and a comma-separated list
for the indexing operation, fftshift shifts arrays of any dimension using
just a single operation: y = x(idx{:}). If you were to use explicit indexing,
you would need to write one if statement for each dimension you want the
function to handle:

if ndims(x) == 1
y = x(index1);

else if ndims(x) == 2
y = x(index1, index2);

end

Another way to handle this without a comma-separated list would be to loop
over each dimension, converting one dimension at a time and moving data
each time. With a comma-separated list, you move the data just once. A
comma-separated list makes it very easy to generalize the swapping operation
to an arbitrary number of dimensions.

2-68

Alternatives to the eval Function

Alternatives to the eval Function

In this section...

“Why Avoid the eval Function?” on page 2-69

“Variables with Sequential Names” on page 2-69

“Files with Sequential Names” on page 2-70

“Function Names in Variables” on page 2-71

“Field Names in Variables” on page 2-72

“Error Handling” on page 2-72

Why Avoid the eval Function?
Although the eval function is very powerful and flexible, it not always the
best solution to a programming problem. Code that calls eval is often less
efficient and more difficult to read and debug than code that uses other
functions or language constructs. For example:

• MATLAB compiles code the first time you run it to enhance performance
for future runs. However, because code in an eval statement can change at
run time, it is not compiled.

• Code within an eval statement can unexpectedly create or assign to a
variable already in the current workspace, overwriting existing data.

• Concatenating strings within an eval statement is often difficult to read.
Other language constructs can simplify the syntax in your code.

For many common uses of eval, there are preferred alternate approaches,
as shown in the following examples.

Variables with Sequential Names
A frequent use of the eval function is to create sets of variables such as A1,
A2, ..., An, but this approach does not use the array processing power of
MATLAB and is not recommended. The preferred method is to store related
data in a single array. If the data sets are of different types or sizes, use a
structure or cell array.

2-69

2 Program Components

For example, create a cell array that contains 10 elements, where each
element is a numeric array:

numArrays = 10;
A = cell(numArrays,1);
for n = 1:numArrays

A{n} = magic(n);
end

Access the data in the cell array by indexing with curly braces. For example,
display the fifth element of A:

A{5}

ans =
17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

The assignment statement A{n} = magic(n) is more elegant and efficient
than this call to eval:

eval(['A', int2str(n),' = magic(n)']) % Not recommended

For more information, see:

• “Create a Cell Array” on page 8-3

• “Create a Structure Array” on page 7-2

Files with Sequential Names
Related data files often have a common root name with an integer index, such
as myfile1.mat through myfileN.mat. A common (but not recommended) use
of the eval function is to construct and pass each file name to a function
using command syntax, such as

eval(['save myfile',int2str(n),'.mat']) % Not recommended

The best practice is to use function syntax, which allows you to pass variables
as inputs. For example:

2-70

Alternatives to the eval Function

currentFile = 'myfile1.mat';
save(currentFile)

You can construct file names within a loop using the sprintf function (which
is usually more efficient than int2str), and then call the save function
without eval. This code creates 10 files in the current folder:

numFiles = 10;
for n = 1:numFiles

randomData = rand(n);
currentFile = sprintf('myfile%d.mat',n);
save(currentFile,'randomData')

end

For more information, see:

• “Command vs. Function Syntax” on page 1-12

• “Process a Sequence of Files”

Function Names in Variables
A common use of eval is to execute a function when the name of the function
is in a variable string. There are two ways to evaluate functions from
variables that are more efficient than using eval:

• Create function handles with the @ symbol or with the str2func function.
For example, run a function from a list stored in a cell array:

examples = {@odedemo,@sunspots,@fitdemo};
n = input('Select an example (1, 2, or 3): ');
examples{n}()

• Use the feval function. For example, call a plot function (such as plot,
bar, or pie) with data that you specify at run time:

plotFunction = input('Specify a plotting function: ','s');
data = input('Enter data to plot: ');
feval(plotFunction,data)

2-71

2 Program Components

Field Names in Variables
Access data in a structure with a variable field name by enclosing the
expression for the field in parentheses. For example:

myData.height = [67, 72, 58];
myData.weight = [140, 205, 90];

fieldName = input('Select data (height or weight): ','s');
dataToUse = myData.(fieldName);

If you enter weight at the input prompt, then you can find the minimum
weight value with the following command.

min(dataToUse)

ans =
90

For an additional example, see “Generate Field Names from Variables” on
page 7-11.

Error Handling
The preferred method for error handling in MATLAB is to use a try/catch
statement. For example:

try
B = A;

catch exception
disp('A is undefined')

end

If your workspace does not contain variable A, then this code returns:

A is undefined

Previous versions of the documentation for the eval function include the
syntax eval(expression,catch_expr). If evaluating the expression input
returns an error, then eval evaluates catch_expr. However, an explicit
try/catch is significantly clearer than an implicit catch in an eval statement.
Using the implicit catch is not recommended.

2-72

Shell Escape Functions

Shell Escape Functions
It is sometimes useful to access your own C or Fortran programs using shell
escape functions. Shell escape functions use the shell escape command ! to
make external stand-alone programs act like new MATLAB functions. A
shell escape function

1 Saves the appropriate variables on disk.

2 Runs an external program (which reads the data file, processes the data,
and writes the results back out to disk).

3 Loads the processed file back into the workspace.

For example, look at the code for garfield.m, below. This function uses an
external function, gareqn, to find the solution to Garfield’s equation.

function y = garfield(a,b,q,r)
save gardata a b q r
!gareqn
load gardata

This file

1 Saves the input arguments a, b, q, and r to a MAT-file in the workspace
using the save command.

2 Uses the shell escape operator to access a C or Fortran program called
gareqn that uses the workspace variables to perform its computation.
gareqn writes its results to the gardata MAT-file.

3 Loads the gardata MAT-file described in “Writing Custom Applications to
Read and Write MAT-Files” to obtain the results.

2-73

2 Program Components

Symbol Reference

In this section...

“Asterisk — *” on page 2-74

“At — @” on page 2-75

“Colon — :” on page 2-76

“Comma — ,” on page 2-77

“Curly Braces — { }” on page 2-78

“Dot — .” on page 2-78

“Dot-Dot — ..” on page 2-79

“Dot-Dot-Dot (Ellipsis) — ...” on page 2-79

“Dot-Parentheses — .()” on page 2-80

“Exclamation Point — !” on page 2-81

“Parentheses — ()” on page 2-81

“Percent — %” on page 2-82

“Percent-Brace — %{ %}” on page 2-82

“Plus — +” on page 2-83

“Semicolon — ;” on page 2-83

“Single Quotes — ’ ’” on page 2-84

“Space Character” on page 2-84

“Slash and Backslash — / \” on page 2-85

“Square Brackets — []” on page 2-85

“Tilde — ~” on page 2-86

Asterisk — *
An asterisk in a filename specification is used as a wildcard specifier, as
described below.

2-74

Symbol Reference

Filename Wildcard
Wildcards are generally used in file operations that act on multiple files
or folders. They usually appear in the string containing the file or folder
specification. MATLAB matches all characters in the name exactly except for
the wildcard character *, which can match any one or more characters.

To locate all files with names that start with 'january_' and have a mat
file extension, use

dir('january_*.mat')

You can also use wildcards with the who and whos functions. To get
information on all variables with names starting with 'image' and ending
with 'Offset', use

whos image*Offset

At — @
The @ sign signifies either a function handle constructor or a folder that
supports a MATLAB class.

Function Handle Constructor
The @ operator forms a handle to either the named function that follows the @
sign, or to the anonymous function that follows the @ sign.

Function Handles in General. Function handles are commonly used in
passing functions as arguments to other functions. Construct a function
handle by preceding the function name with an @ sign:

fhandle = @myfun

For more information, see function_handle.

Handles to Anonymous Functions. Anonymous functions give you a quick
means of creating simple functions without having to create your function in
a file each time. You can construct an anonymous function and a handle to
that function using the syntax

fhandle = @(arglist) body

2-75

2 Program Components

where body defines the body of the function and arglist is the list of
arguments you can pass to the function.

See “Anonymous Functions” on page 15-23 for more information.

Class Folder Designator
An @ sign can indicate the name of a class folder, such as

\@myclass\get.m

See the documentation on “Options for Class Folders” for more information.

Colon — :
The colon operator generates a sequence of numbers that you can use in
creating or indexing into arrays. See“Generating a Numeric Sequence” for
more information on using the colon operator.

Numeric Sequence Range
Generate a sequential series of regularly spaced numbers from first to last
using the syntax first:last. For an incremental sequence from 6 to 17, use

N = 6:17

Numeric Sequence Step
Generate a sequential series of numbers, each number separated by a step
value, using the syntax first:step:last. For a sequence from 2 through 38,
stepping by 4 between each entry, use

N = 2:4:38

Indexing Range Specifier
Index into multiple rows or columns of a matrix using the colon operator
to specify a range of indices:

2-76

Symbol Reference

B = A(7, 1:5); % Read columns 1-5 of row 7.
B = A(4:2:8, 1:5); % Read columns 1-5 of rows 4, 6, and 8.
B = A(:, 1:5); % Read columns 1-5 of all rows.

Conversion to Column Vector
Convert a matrix or array to a column vector using the colon operator as a
single index:

A = rand(3,4);
B = A(:);

Preserving Array Shape on Assignment
Using the colon operator on the left side of an assignment statement, you can
assign new values to array elements without changing the shape of the array:

A = rand(3,4);
A(:) = 1:12;

Comma — ,
A comma is used to separate the following types of elements.

Row Element Separator
When constructing an array, use a comma to separate elements that belong
in the same row:

A = [5.92, 8.13, 3.53]

Array Index Separator
When indexing into an array, use a comma to separate the indices into each
dimension:

X = A(2, 7, 4)

2-77

2 Program Components

Function Input and Output Separator
When calling a function, use a comma to separate output and input
arguments:

function [data, text] = xlsread(file, sheet, range, mode)

Command or Statement Separator
To enter more than one MATLAB command or statement on the same line,
separate each command or statement with a comma:

for k = 1:10, sum(A(k)), end

Curly Braces — { }
Use curly braces to construct or get the contents of cell arrays.

Cell Array Constructor
To construct a cell array, enclose all elements of the array in curly braces:

C = {[2.6 4.7 3.9], rand(8)*6, 'C. Coolidge'}

Cell Array Indexing
Index to a specific cell array element by enclosing all indices in curly braces:

A = C{4,7,2}

For more information, see “Cell Arrays”

Dot — .
The single dot operator has the following different uses in MATLAB.

Decimal Point
MATLAB uses a period to separate the integral and fractional parts of a
number.

2-78

Symbol Reference

Structure Field Definition
Add fields to a MATLAB structure by following the structure name with a
dot and then a field name:

funds(5,2).bondtype = 'Corporate';

For more information, see “Structures”

Object Method Specifier
Specify the properties of an instance of a MATLAB class using the object
name followed by a dot, and then the property name:

val = asset.current_value

Dot-Dot — ..
Two dots in sequence refer to the parent of the current folder.

Parent Folder
Specify the folder immediately above your current folder using two dots. For
example, to go up two levels in the folder tree and down into the test folder,
use

cd ..\..\test

Dot-Dot-Dot (Ellipsis) — ...
A series of three consecutive periods (...) is the line continuation operator in
MATLAB. This is often referred to as an ellipsis, but it should be noted that
the line continuation operator is a three-character operator and is different
from the single-character ellipsis represented in ASCII by the hexadecimal
number 2026.

Line Continuation
Continue any MATLAB command or expression by placing an ellipsis at the
end of the line to be continued:

sprintf('The current value of %s is %d', ...
vname, value)

2-79

2 Program Components

Entering Long Strings. You cannot use an ellipsis within single quotes
to continue a string to the next line:

string = 'This is not allowed and will generate an ...
error in MATLAB.'

To enter a string that extends beyond a single line, piece together shorter
strings using either the concatenation operator ([]) or the sprintf function.

Here are two examples:

quote1 = [
'Tiger, tiger, burning bright in the forests of the night,' ...
'what immortal hand or eye could frame thy fearful symmetry?'];

quote2 = sprintf('%s%s%s', ...
'In Xanadu did Kubla Khan a stately pleasure-dome decree,', ...
'where Alph, the sacred river, ran ', ...
'through caverns measureless to man down to a sunless sea.');

Defining Arrays. MATLAB interprets the ellipsis as a space character. For
statements that define arrays or cell arrays within [] or {} operators, a space
character separates array elements. For example,

not_valid = [1 2 zeros...
(1,3)]

is equivalent to

not_valid = [1 2 zeros (1,3)]

which returns an error. Place the ellipses so that the interpreted statement
is valid, such as

valid = [1 2 ...
zeros(1,3)]

Dot-Parentheses — .()
Use dot-parentheses to specify the name of a dynamic structure field.

2-80

Symbol Reference

Dynamic Structure Fields
Sometimes it is useful to reference structures with field names that can
vary. For example, the referenced field might be passed as an argument to a
function. Dynamic field names specify a variable name for a structure field.

The variable fundtype shown here is a dynamic field name:

type = funds(5,2).(fundtype);

See “Generate Field Names from Variables” on page 7-11 for more information.

Exclamation Point — !
The exclamation point precedes operating system commands that you want to
execute from within MATLAB.

Shell Escape
The exclamation point initiates a shell escape function. Such a function is to
be performed directly by the operating system:

!rmdir oldtests

See “Shell Escape Functions” on page 2-73 for more information.

Parentheses — ()
Parentheses are used mostly for indexing into elements of an array or for
specifying arguments passed to a called function. Parenthesis also control the
order of operations, and can group a vector visually (such as x = (1:10))
without calling a concatenation function.

Array Indexing
When parentheses appear to the right of a variable name, they are indices
into the array stored in that variable:

A(2, 7, 4)

2-81

2 Program Components

Function Input Arguments
When parentheses follow a function name in a function declaration or call, the
enclosed list contains input arguments used by the function:

function sendmail(to, subject, message, attachments)

Percent — %
The percent sign is most commonly used to indicate nonexecutable text within
the body of a program. This text is normally used to include comments in your
code. Two percent signs, %%, serve as a cell delimiter described in “Run Code
Sections” on page 14-6. Some functions also interpret the percent sign as a
conversion specifier.

Single Line Comments
Precede any one-line comments in your code with a percent sign. MATLAB
does not execute anything that follows a percent sign (that is, unless the
sign is quoted, '%'):

% The purpose of this routine is to compute
% the value of ...

See “Add Comments to Programs” on page 14-4 for more information.

Conversion Specifiers
Some functions, like sscanf and sprintf, precede conversion specifiers with
the percent sign:

sprintf('%s = %d', name, value)

Percent-Brace — %{ %}
The %{ and %} symbols enclose a block of comments that extend beyond one
line.

Block Comments
Enclose any multiline comments with percent followed by an opening or
closing brace.

2-82

Symbol Reference

%{
The purpose of this routine is to compute
the value of ...
%}

Note With the exception of whitespace characters, the %{ and %} operators
must appear alone on the lines that immediately precede and follow the block
of help text. Do not include any other text on these lines.

Plus — +
The + sign appears most frequently as an arithmetic operator, but is also
used to designate the names of package folders. For more information, see
“Packages Create Namespaces”.

Semicolon — ;
The semicolon can be used to construct arrays, suppress output from a
MATLAB command, or to separate commands entered on the same line.

Array Row Separator
When used within square brackets to create a new array or concatenate
existing arrays, the semicolon creates a new row in the array:

A = [5, 8; 3, 4]
A =

5 8
3 4

Output Suppression
When placed at the end of a command, the semicolon tells MATLAB not to
display any output from that command. In this example, MATLAB does not
display the resulting 100-by-100 matrix:

A = ones(100, 100);

2-83

2 Program Components

Command or Statement Separator
Like the comma operator, you can enter more than one MATLAB command
on a line by separating each command with a semicolon. MATLAB suppresses
output for those commands terminated with a semicolon, and displays the
output for commands terminated with a comma.

In this example, assignments to variables A and C are terminated with
a semicolon, and thus do not display. Because the assignment to B is
comma-terminated, the output of this one command is displayed:

A = 12.5; B = 42.7, C = 1.25;
B =

42.7000

Single Quotes — ’ ’
Single quotes are the constructor symbol for MATLAB character arrays.

Character and String Constructor
MATLAB constructs a character array from all characters enclosed in single
quotes. If only one character is in quotes, then MATLAB constructs a 1-by-1
array:

S = 'Hello World'

For more information, see “Characters and Strings”

Space Character
The space character serves a purpose similar to the comma in that it can be
used to separate row elements in an array constructor, or the values returned
by a function.

Row Element Separator
You have the option of using either commas or spaces to delimit the row
elements of an array when constructing the array. To create a 1-by-3 array,
use

A = [5.92 8.13 3.53]

2-84

Symbol Reference

A =
5.9200 8.1300 3.5300

When indexing into an array, you must always use commas to reference each
dimension of the array.

Function Output Separator
Spaces are allowed when specifying a list of values to be returned by a
function. You can use spaces to separate return values in both function
declarations and function calls:

function [data text] = xlsread(file, sheet, range, mode)

Slash and Backslash — / \
The slash (/) and backslash (\) characters separate the elements of a path or
folder string. On Microsoft Windows-based systems, both slash and backslash
have the same effect. On The Open Group UNIX-based systems, you must
use slash only.

On a Windows system, you can use either backslash or slash:

dir([matlabroot '\toolbox\matlab\elmat\shiftdim.m'])
dir([matlabroot '/toolbox/matlab/elmat/shiftdim.m'])

On a UNIX system, use only the forward slash:

dir([matlabroot '/toolbox/matlab/elmat/shiftdim.m'])

Square Brackets — []
Square brackets are used in array construction and concatenation, and also in
declaring and capturing values returned by a function.

Array Constructor
To construct a matrix or array, enclose all elements of the array in square
brackets:

A = [5.7, 9.8, 7.3; 9.2, 4.5, 6.4]

2-85

2 Program Components

Concatenation
To combine two or more arrays into a new array through concatenation,
enclose all array elements in square brackets:

A = [B, eye(6), diag([0:2:10])]

Function Declarations and Calls
When declaring or calling a function that returns more than one output,
enclose each return value that you need in square brackets:

[data, text] = xlsread(file, sheet, range, mode)

Tilde — ~
The tilde character is used in comparing arrays for unequal values, finding
the logical NOT of an array, and as a placeholder for an input or output
argument you want to omit from a function call.

Not Equal to
To test for inequality values of elements in arrays a and b for inequality,
use a~=b:

a = primes(29); b = [2 4 6 7 11 13 20 22 23 29];
not_prime = b(a~=b)
not_prime =

4 6 20 22

Logical NOT
To find those elements of an array that are zero, use:

a = [35 42 0 18 0 0 0 16 34 0];
~a
ans =

0 0 1 0 1 1 1 0 0 1

2-86

Symbol Reference

Argument Placeholder
To have the fileparts function return its third output value and skip the
first two, replace arguments one and two with a tilde character:

[~, ~, filenameExt] = fileparts(fileSpec);

See “Ignore Function Outputs” on page 1-7 in the MATLAB Programming
documentation for more information.

2-87

2 Program Components

2-88

Classes (Data Types)

• Chapter 3, “Overview of MATLAB Classes”

• Chapter 4, “Numeric Classes”

• Chapter 5, “The Logical Class”

• Chapter 6, “Characters and Strings”

• Chapter 7, “Structures”

• Chapter 8, “Cell Arrays”

• Chapter 9, “Function Handles”

• Chapter 10, “Map Containers”

• Chapter 11, “Combining Unlike Classes”

• Chapter 12, “Using Objects”

• Chapter 13, “Defining Your Own Classes”

3

Overview of MATLAB
Classes

3 Overview of MATLAB® Classes

Fundamental MATLAB Classes
There are many different data types, or classes, that you can work with in
the MATLAB software. You can build matrices and arrays of floating-point
and integer data, characters and strings, and logical true and false states.
Function handles connect your code with any MATLAB function regardless of
the current scope. Structures and cell arrays provide a way to store dissimilar
types of data in the same array.

There are 15 fundamental classes in MATLAB. Each of these classes is in the
form of a matrix or array. With the exception of function handles, this matrix
or array is a minimum of 0-by-0 in size and can grow to an n-dimensional
array of any size. A function handle is always scalar (1-by-1).

All of the fundamental MATLAB classes are shown in the diagram below:

Numeric classes in the MATLAB software include signed and unsigned
integers, and single- and double-precision floating-point numbers. By
default, MATLAB stores all numeric values as double-precision floating

3-2

Fundamental MATLAB® Classes

point. (You cannot change the default type and precision.) You can choose
to store any number, or array of numbers, as integers or as single-precision.
Integer and single-precision arrays offer more memory-efficient storage than
double-precision.

All numeric types support basic array operations, such as subscripting,
reshaping, and mathematical operations.

You can create two-dimensional double and logical matrices using one of
two storage formats: full or sparse. For matrices with mostly zero-valued
elements, a sparse matrix requires a fraction of the storage space required
for an equivalent full matrix. Sparse matrices invoke methods especially
tailored to solve sparse problems

These classes require different amounts of storage, the smallest being a
logical value or 8-bit integer which requires only 1 byte. It is important to
keep this minimum size in mind if you work on data in files that were written
using a precision smaller than 8 bits.

The following table describes the fundamental classes in more detail.

Class Name Documentation Intended Use

double, single Floating-Point
Numbers

• Required for fractional numeric data.

• Double and Single precision.

• Use realmin and realmax to show range of values.

• Two-dimensional arrays can be sparse.

• Default numeric type in MATLAB.

int8, uint8,
int16,
uint16,
int32,

Integers • Use for signed and unsigned whole numbers.

• More efficient use of memory.

• Use intmin and intmax to show range of values.

3-3

3 Overview of MATLAB® Classes

Class Name Documentation Intended Use

uint32,
int64, uint64

• Choose from 4 sizes (8, 16, 32, and 64 bits).

char “Characters and
Strings”

• Required for text.

• Native or unicode.

• Converts to/from numeric.

• Use with regular expressions.

• For multiple strings, use cell arrays.

logical “Logical
Operations”

• Use in relational conditions or to test state.

• Can have one of two values: true or false.

• Also useful in array indexing.

• Two-dimensional arrays can be sparse.

function_handle “Function
Handles”

• Pointer to a function.

• Enables passing a function to another function

• Can also call functions outside usual scope.

• Useful in Handle Graphics callbacks.

• Save to MAT-file and restore later.

3-4

Fundamental MATLAB® Classes

Class Name Documentation Intended Use

struct “Structures” • Fields store arrays of varying classes and sizes.

• Access multiple fields/indices in single operation.

• Field names identify contents.

• Simple method of passing function arguments.

• Use in comma-separated lists for efficiency.

• More memory required for overhead

cell “Cell Arrays” • Cells store arrays of varying classes and sizes.

• Allows freedom to package data as you want.

• Manipulation of elements is similar to arrays.

• Simple method of passing function arguments.

• Use in comma-separated lists for efficiency.

• More memory required for overhead

Concepts • “Valid Combinations of Unlike Classes” on page 11-2

3-5

3 Overview of MATLAB® Classes

3-6

4

Numeric Classes

• “Overview of Numeric Classes” on page 4-2

• “Integers” on page 4-3

• “Floating-Point Numbers” on page 4-7

• “Complex Numbers” on page 4-18

• “Infinity and NaN” on page 4-20

• “Identifying Numeric Classes” on page 4-22

• “Display Format for Numeric Values” on page 4-23

• “Function Summary” on page 4-26

4 Numeric Classes

Overview of Numeric Classes
Numeric classes in the MATLAB software include signed and unsigned
integers, and single- and double-precision floating-point numbers. By
default, MATLAB stores all numeric values as double-precision floating
point. (You cannot change the default type and precision.) You can choose
to store any number, or array of numbers, as integers or as single-precision.
Integer and single-precision arrays offer more memory-efficient storage than
double-precision.

All numeric types support basic array operations, such as subscripting,
reshaping, and mathematical operations.

4-2

Integers

Integers

In this section...

“Integer Classes” on page 4-3

“Creating Integer Data” on page 4-4

“Arithmetic Operations on Integer Classes” on page 4-5

“Largest and Smallest Values for Integer Classes” on page 4-6

“Integer Functions” on page 4-6

Integer Classes
MATLAB has four signed and four unsigned integer classes. Signed types
enable you to work with negative integers as well as positive, but cannot
represent as wide a range of numbers as the unsigned types because one bit
is used to designate a positive or negative sign for the number. Unsigned
types give you a wider range of numbers, but these numbers can only be
zero or positive.

MATLAB supports 1-, 2-, 4-, and 8-byte storage for integer data. You can
save memory and execution time for your programs if you use the smallest
integer type that accommodates your data. For example, you do not need a
32-bit integer to store the value 100.

Here are the eight integer classes, the range of values you can store with each
type, and the MATLAB conversion function required to create that type:

Class Range of Values Conversion Function

Signed 8-bit integer -27 to 27-1 int8

Signed 16-bit integer -215 to 215-1 int16

Signed 32-bit integer -231 to 231-1 int32

Signed 64-bit integer -263 to 263-1 int64

Unsigned 8-bit integer 0 to 28-1 uint8

Unsigned 16-bit integer 0 to 216-1 uint16

4-3

4 Numeric Classes

Class Range of Values Conversion Function

Unsigned 32-bit integer 0 to 232-1 uint32

Unsigned 64-bit integer 0 to 264-1 uint64

Creating Integer Data
MATLAB stores numeric data as double-precision floating point (double)
by default. To store data as an integer, you need to convert from double to
the desired integer type. Use one of the conversion functions shown in the
table above.

For example, to store 325 as a 16-bit signed integer assigned to variable x, type

x = int16(325);

If the number being converted to an integer has a fractional part, MATLAB
rounds to the nearest integer. If the fractional part is exactly 0.5, then from
the two equally nearby integers, MATLAB chooses the one for which the
absolute value is larger in magnitude:

x = 325.499; x = x + .001;

int16(x) int16(x)
ans = ans =

325 326

If you need to round a number using a rounding scheme other than the
default, MATLAB provides four rounding functions: round, fix, floor, and
ceil. The fix function enables you to override the default and round towards
zero when there is a nonzero fractional part:

x = 325.9;

int16(fix(x))
ans =

325

Arithmetic operations that involve both integers and floating-point always
result in an integer data type. MATLAB rounds the result, when necessary,

4-4

Integers

according to the default rounding algorithm. The example below yields an
exact answer of 1426.75 which MATLAB then rounds to the next highest
integer:

int16(325) * 4.39
ans =

1427

The integer conversion functions are also useful when converting other
classes, such as strings, to integers:

str = 'Hello World';

int8(str)
ans =

72 101 108 108 111 32 87 111 114 108 100

Arithmetic Operations on Integer Classes
MATLAB can perform integer arithmetic on the following types of data:

• Integers or integer arrays of the same integer data type. This yields a
result that has the same data type as the operands:

x = uint32([132 347 528]) .* uint32(75);
class(x)
ans =

uint32

• Integers or integer arrays and scalar double-precision floating-point
numbers. This yields a result that has the same data type as the integer
operands:

x = uint32([132 347 528]) .* 75.49;
class(x)
ans =

uint32

For all binary operations in which one operand is an array of integer data
type (except 64-bit integers) and the other is a scalar double, MATLAB
computes the operation using elementwise double-precision arithmetic, and
then converts the result back to the original integer data type. For binary

4-5

4 Numeric Classes

operations involving a 64-bit integer array and a scalar double, MATLAB
computes the operation as if 80-bit extended-precision arithmetic were used,
to prevent loss of precision.

For a list of the operations that support integer classes, see Nondouble Data
Type Support in the arithmetic operators reference page.

Largest and Smallest Values for Integer Classes
For each integer data type, there is a largest and smallest number that you
can represent with that type. The table shown under “Integers” on page 4-3
lists the largest and smallest values for each integer data type in the “Range
of Values” column.

You can also obtain these values with the intmax and intmin functions:

intmax('int8') intmin('int8')
ans = ans =

127 -128

If you convert a number that is larger than the maximum value of an integer
data type to that type, MATLAB sets it to the maximum value. Similarly, if
you convert a number that is smaller than the minimum value of the integer
data type, MATLAB sets it to the minimum value. For example,

x = int8(300) x = int8(-300)
x = x =

127 -128

Also, when the result of an arithmetic operation involving integers exceeds
the maximum (or minimum) value of the data type, MATLAB sets it to the
maximum (or minimum) value:

x = int8(100) * 3 x = int8(-100) * 3
x = x =

127 -128

Integer Functions
See Integer Functions on page 4-26 for a list of functions most commonly used
with integers in MATLAB.

4-6

Floating-Point Numbers

Floating-Point Numbers

In this section...

“Double-Precision Floating Point” on page 4-7

“Single-Precision Floating Point” on page 4-8

“Creating Floating-Point Data” on page 4-8

“Arithmetic Operations on Floating-Point Numbers” on page 4-10

“Largest and Smallest Values for Floating-Point Classes” on page 4-11

“Accuracy of Floating-Point Data” on page 4-12

“Avoiding Common Problems with Floating-Point Arithmetic” on page 4-14

“Floating-Point Functions” on page 4-16

“References” on page 4-16

MATLAB represents floating-point numbers in either double-precision or
single-precision format. The default is double precision, but you can make
any number single precision with a simple conversion function.

Double-Precision Floating Point
MATLAB constructs the double-precision (or double) data type according
to IEEE® Standard 754 for double precision. Any value stored as a double
requires 64 bits, formatted as shown in the table below:

Bits Usage

63 Sign (0 = positive, 1 = negative)

62 to 52 Exponent, biased by 1023

51 to 0 Fraction f of the number 1.f

4-7

4 Numeric Classes

Single-Precision Floating Point
MATLAB constructs the single-precision (or single) data type according
to IEEE Standard 754 for single precision. Any value stored as a single
requires 32 bits, formatted as shown in the table below:

Bits Usage

31 Sign (0 = positive, 1 = negative)

30 to 23 Exponent, biased by 127

22 to 0 Fraction f of the number 1.f

Because MATLAB stores numbers of type single using 32 bits, they require
less memory than numbers of type double, which use 64 bits. However,
because they are stored with fewer bits, numbers of type single are
represented to less precision than numbers of type double.

Creating Floating-Point Data
Use double-precision to store values greater than approximately 3.4 x 1038

or less than approximately -3.4 x 1038. For numbers that lie between these
two limits, you can use either double- or single-precision, but single requires
less memory.

Creating Double-Precision Data
Because the default numeric type for MATLAB is double, you can create a
double with a simple assignment statement:

x = 25.783;

The whos function shows that MATLAB has created a 1-by-1 array of type
double for the value you just stored in x:

whos x
Name Size Bytes Class

x 1x1 8 double

4-8

Floating-Point Numbers

Use isfloat if you just want to verify that x is a floating-point number. This
function returns logical 1 (true) if the input is a floating-point number, and
logical 0 (false) otherwise:

isfloat(x)
ans =

1

You can convert other numeric data, characters or strings, and logical data to
double precision using the MATLAB function, double. This example converts
a signed integer to double-precision floating point:

y = int64(-589324077574); % Create a 64-bit integer

x = double(y) % Convert to double
x =

-5.8932e+11

Creating Single-Precision Data
Because MATLAB stores numeric data as a double by default, you need to
use the single conversion function to create a single-precision number:

x = single(25.783);

The whos function returns the attributes of variable x in a structure. The
bytes field of this structure shows that when x is stored as a single, it requires
just 4 bytes compared with the 8 bytes to store it as a double:

xAttrib = whos('x');
xAttrib.bytes
ans =

4

You can convert other numeric data, characters or strings, and logical data to
single precision using the single function. This example converts a signed
integer to single-precision floating point:

y = int64(-589324077574); % Create a 64-bit integer

x = single(y) % Convert to single

4-9

4 Numeric Classes

x =
-5.8932e+11

Arithmetic Operations on Floating-Point Numbers
This section describes which classes you can use in arithmetic operations
with floating-point numbers.

Double-Precision Operations
You can perform basic arithmetic operations with double and any of the
following other classes. When one or more operands is an integer (scalar or
array), the double operand must be a scalar. The result is of type double,
except where noted otherwise:

• single — The result is of type single

• double

• int* or uint*— The result has the same data type as the integer operand

• char

• logical

This example performs arithmetic on data of types char and double. The
result is of type double:

c = 'uppercase' - 32;

class(c)
ans =

double

char(c)
ans =

UPPERCASE

Single-Precision Operations
You can perform basic arithmetic operations with single and any of the
following other classes. The result is always single:

4-10

Floating-Point Numbers

• single

• double

• char

• logical

In this example, 7.5 defaults to type double, and the result is of type single:

x = single([1.32 3.47 5.28]) .* 7.5;

class(x)
ans =

single

Largest and Smallest Values for Floating-Point
Classes
For the double and single classes, there is a largest and smallest number
that you can represent with that type.

Largest and Smallest Double-Precision Values
The MATLAB functions realmax and realmin return the maximum and
minimum values that you can represent with the double data type:

str = 'The range for double is:\n\t%g to %g and\n\t %g to %g';
sprintf(str, -realmax, -realmin, realmin, realmax)

ans =
The range for double is:

-1.79769e+308 to -2.22507e-308 and
2.22507e-308 to 1.79769e+308

Numbers larger than realmax or smaller than -realmax are assigned the
values of positive and negative infinity, respectively:

realmax + .0001e+308
ans =

Inf

-realmax - .0001e+308

4-11

4 Numeric Classes

ans =
-Inf

Largest and Smallest Single-Precision Values
The MATLAB functions realmax and realmin, when called with the
argument 'single', return the maximum and minimum values that you can
represent with the single data type:

str = 'The range for single is:\n\t%g to %g and\n\t %g to %g';
sprintf(str, -realmax('single'), -realmin('single'), ...

realmin('single'), realmax('single'))

ans =
The range for single is:
-3.40282e+38 to -1.17549e-38 and
1.17549e-38 to 3.40282e+38

Numbers larger than realmax('single') or smaller than
-realmax('single') are assigned the values of positive and negative
infinity, respectively:

realmax('single') + .0001e+038
ans =

Inf

-realmax('single') - .0001e+038
ans =

-Inf

Accuracy of Floating-Point Data
If the result of a floating-point arithmetic computation is not as precise as
you had expected, it is likely caused by the limitations of your computer’s
hardware. Probably, your result was a little less exact because the hardware
had insufficient bits to represent the result with perfect accuracy; therefore, it
truncated the resulting value.

4-12

Floating-Point Numbers

Double-Precision Accuracy
Because there are only a finite number of double-precision numbers, you
cannot represent all numbers in double-precision storage. On any computer,
there is a small gap between each double-precision number and the next larger
double-precision number. You can determine the size of this gap, which limits
the precision of your results, using the eps function. For example, to find the
distance between 5 and the next larger double-precision number, enter

format long

eps(5)
ans =

8.881784197001252e-16

This tells you that there are no double-precision numbers between 5 and
5 + eps(5). If a double-precision computation returns the answer 5, the
result is only accurate to within eps(5).

The value of eps(x) depends on x. This example shows that, as x gets larger,
so does eps(x):

eps(50)
ans =

7.105427357601002e-15

If you enter eps with no input argument, MATLAB returns the value of
eps(1), the distance from 1 to the next larger double-precision number.

Single-Precision Accuracy
Similarly, there are gaps between any two single-precision numbers. If x
has type single, eps(x) returns the distance between x and the next larger
single-precision number. For example,

x = single(5);
eps(x)

returns

ans =
4.7684e-07

4-13

4 Numeric Classes

Note that this result is larger than eps(5). Because there are fewer
single-precision numbers than double-precision numbers, the gaps
between the single-precision numbers are larger than the gaps between
double-precision numbers. This means that results in single-precision
arithmetic are less precise than in double-precision arithmetic.

For a number x of type double, eps(single(x)) gives you an upper bound
for the amount that x is rounded when you convert it from double to single.
For example, when you convert the double-precision number 3.14 to single,
it is rounded by

double(single(3.14) - 3.14)
ans =

1.0490e-07

The amount that 3.14 is rounded is less than

eps(single(3.14))
ans =

2.3842e-07

Avoiding Common Problems with Floating-Point
Arithmetic
Almost all operations in MATLAB are performed in double-precision
arithmetic conforming to the IEEE standard 754. Because computers only
represent numbers to a finite precision (double precision calls for 52 mantissa
bits), computations sometimes yield mathematically nonintuitive results. It is
important to note that these results are not bugs in MATLAB.

Use the following examples to help you identify these cases:

Example 1 — Round-Off or What You Get Is Not What You
Expect
The decimal number 4/3 is not exactly representable as a binary fraction. For
this reason, the following calculation does not give zero, but rather reveals
the quantity eps.

e = 1 - 3*(4/3 - 1)

4-14

Floating-Point Numbers

e =
2.2204e-16

Similarly, 0.1 is not exactly representable as a binary number. Thus, you get
the following nonintuitive behavior:

a = 0.0;
for i = 1:10

a = a + 0.1;
end
a == 1

ans =
0

Note that the order of operations can matter in the computation:

b = 1e-16 + 1 - 1e-16;
c = 1e-16 - 1e-16 + 1;
b == c

ans =
0

There are gaps between floating-point numbers. As the numbers get larger,
so do the gaps, as evidenced by:

(2^53 + 1) - 2^53

ans =
0

Since pi is not really pi, it is not surprising that sin(pi) is not exactly zero:

sin(pi)

ans =
1.224646799147353e-16

4-15

4 Numeric Classes

Example 2 — Catastrophic Cancellation
When subtractions are performed with nearly equal operands, sometimes
cancellation can occur unexpectedly. The following is an example of a
cancellation caused by swamping (loss of precision that makes the addition
insignificant).

sqrt(1e-16 + 1) - 1

ans =
0

Some functions in MATLAB, such as expm1 and log1p, may be used to
compensate for the effects of catastrophic cancellation.

Example 3 — Floating-Point Operations and Linear Algebra
Round-off, cancellation, and other traits of floating-point arithmetic combine
to produce startling computations when solving the problems of linear
algebra. MATLAB warns that the following matrix A is ill-conditioned, and
therefore the system Ax = b may be sensitive to small perturbations:

A = diag([2 eps]);
b = [2; eps];
y = A\b;
Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 1.110223e-16.

These are only a few of the examples showing how IEEE floating-point
arithmetic affects computations in MATLAB. Note that all computations
performed in IEEE 754 arithmetic are affected, this includes applications
written in C or FORTRAN, as well as MATLAB.

Floating-Point Functions
See Floating-Point Functions on page 4-27 for a list of functions most
commonly used with floating-point numbers in MATLAB.

References
The following references provide more information about floating-point
arithmetic.

4-16

Floating-Point Numbers

References
[1] Moler, Cleve, “Floating Points,” MATLAB News and Notes, Fall,
1996. A PDF version is available on the MathWorks Web site at
http://www.mathworks.com/company/newsletters/news_notes/pdf/Fall96Cleve.pdf

[2] Moler, Cleve, Numerical Computing with MATLAB, S.I.A.M.
A PDF version is available on the MathWorks Web site at
http://www.mathworks.com/moler/.

4-17

4 Numeric Classes

Complex Numbers

In this section...

“Creating Complex Numbers” on page 4-18

“Complex Number Functions” on page 4-19

Creating Complex Numbers
Complex numbers consist of two separate parts: a real part and an imaginary
part. The basic imaginary unit is equal to the square root of -1. This is
represented in MATLAB by either of two letters: i or j.

The following statement shows one way of creating a complex value in
MATLAB. The variable x is assigned a complex number with a real part of 2
and an imaginary part of 3:

x = 2 + 3i;

Another way to create a complex number is using the complex function. This
function combines two numeric inputs into a complex output, making the first
input real and the second imaginary:

x = rand(3) * 5;
y = rand(3) * -8;

z = complex(x, y)
z =

4.7842 -1.0921i 0.8648 -1.5931i 1.2616 -2.2753i
2.6130 -0.0941i 4.8987 -2.3898i 4.3787 -3.7538i
4.4007 -7.1512i 1.3572 -5.2915i 3.6865 -0.5182i

You can separate a complex number into its real and imaginary parts using
the real and imag functions:

zr = real(z)
zr =

4.7842 0.8648 1.2616
2.6130 4.8987 4.3787
4.4007 1.3572 3.6865

4-18

Complex Numbers

zi = imag(z)
zi =

-1.0921 -1.5931 -2.2753
-0.0941 -2.3898 -3.7538
-7.1512 -5.2915 -0.5182

Complex Number Functions
See Complex Number Functions on page 4-27 for a list of functions most
commonly used with MATLAB complex numbers in MATLAB.

4-19

4 Numeric Classes

Infinity and NaN

In this section...

“Infinity” on page 4-20

“NaN” on page 4-20

“Infinity and NaN Functions” on page 4-21

Infinity
MATLAB represents infinity by the special value inf. Infinity results from
operations like division by zero and overflow, which lead to results too large
to represent as conventional floating-point values. MATLAB also provides
a function called inf that returns the IEEE arithmetic representation for
positive infinity as a double scalar value.

Several examples of statements that return positive or negative infinity in
MATLAB are shown here.

x = 1/0
x =
Inf

x = 1.e1000
x =

Inf

x = exp(1000)
x =

Inf

x = log(0)
x =

-Inf

Use the isinf function to verify that x is positive or negative infinity:

x = log(0);

isinf(x)
ans =

1

NaN
MATLAB represents values that are not real or complex numbers with a
special value called NaN, which stands for Not a Number. Expressions like 0/0
and inf/inf result in NaN, as do any arithmetic operations involving a NaN:

4-20

Infinity and NaN

x = 0/0
x =

NaN

Use the isnan function to verify that the real part of x is NaN:

isnan(x)
ans =

1

MATLAB also provides a function called NaN that returns the IEEE arithmetic
representation for NaN as a double scalar value:

x = NaN;

whos x
Name Size Bytes Class

x 1x1 8 double

Logical Operations on NaN
Because two NaNs are not equal to each other, logical operations involving NaN
always return false, except for a test for inequality, (NaN ~= NaN):

NaN > NaN
ans =

0

NaN ~= NaN
ans =

1

Infinity and NaN Functions
See Infinity and NaN Functions on page 4-28 for a list of functions most
commonly used with inf and NaN in MATLAB.

4-21

4 Numeric Classes

Identifying Numeric Classes
You can check the data type of a variable x using any of these commands.

Command Operation

whos x Display the data type of x.

xType = class(x); Assign the data type of x to a variable.

isnumeric(x) Determine if x is a numeric type.

isa(x, 'integer')
isa(x, 'uint64')
isa(x, 'float')
isa(x, 'double')
isa(x, 'single')

Determine if x is the specified numeric type.
(Examples for any integer, unsigned 64-bit integer,
any floating point, double precision, and single
precision are shown here).

isreal(x) Determine if x is real or complex.

isnan(x) Determine if x is Not a Number (NaN).

isinf(x) Determine if x is infinite.

isfinite(x) Determine if x is finite.

4-22

Display Format for Numeric Values

Display Format for Numeric Values

In this section...

“Default Display” on page 4-23

“Display Format Examples” on page 4-23

“Setting Numeric Format in a Program” on page 4-24

Default Display
By default, MATLAB displays numeric output as 5-digit scaled, fixed-point
values. You can change the way numeric values are displayed to any of the
following:

• 5-digit scaled fixed point, floating point, or the best of the two

• 15-digit scaled fixed point, floating point, or the best of the two

• A ratio of small integers

• Hexadecimal (base 16)

• Bank notation

All available formats are listed on the format reference page.

To change the numeric display setting, use either the format function or
the Preferences dialog box (accessible from the MATLAB File menu). The
format function changes the display of numeric values for the duration of a
single MATLAB session, while your Preferences settings remain active from
one session to the next. These settings affect only how numbers are displayed,
not how MATLAB computes or saves them.

Display Format Examples
Here are a few examples of the various formats and the output produced from
the following two-element vector x, with components of different magnitudes.

Check the current format setting:

get(0, 'format')

4-23

4 Numeric Classes

ans =
short

Set the value for x and display in 5-digit scaled fixed point:

x = [4/3 1.2345e-6]
x =

1.3333 0.0000

Set the format to 5-digit floating point:

format short e
x
x =

1.3333e+00 1.2345e-06

Set the format to 15-digit scaled fixed point:

format long
x
x =

1.333333333333333 0.000001234500000

Set the format to 'rational' for small integer ratio output:

format rational
x
x =

4/3 1/810045

Set an integer value for x and display it in hexadecimal (base 16) format:

format hex
x = uint32(876543210)
x =

343efcea

Setting Numeric Format in a Program
To temporarily change the numeric format inside a program, get the original
format using the get function and save it in a variable. When you finish

4-24

Display Format for Numeric Values

working with the new format, you can restore the original format setting
using the set function as shown here:

origFormat = get(0, 'format');
format('rational');

-- Work in rational format --

set(0,'format', origFormat);

4-25

4 Numeric Classes

Function Summary
MATLAB provides these functions for working with numeric classes:

• Integer Functions on page 4-26

• Floating-Point Functions on page 4-27

• Complex Number Functions on page 4-27

• Infinity and NaN Functions on page 4-28

• Class Identification Functions on page 4-28

• Output Formatting Functions on page 4-28

Integer Functions

Function Description

int8, int16,
int32, int64

Convert to signed 1-, 2-, 4-, or 8-byte integer.

uint8, uint16,
uint32, uint64

Convert to unsigned 1-, 2-, 4-, or 8-byte integer.

ceil Round towards plus infinity to nearest integer

class Return the data type of an object.

fix Round towards zero to nearest integer

floor Round towards minus infinity to nearest integer

isa Determine if input value has the specified data type.

isinteger Determine if input value is an integer array.

isnumeric Determine if input value is a numeric array.

round Round towards the nearest integer

4-26

Function Summary

Floating-Point Functions

Function Description

double Convert to double precision.

single Convert to single precision.

class Return the data type of an object.

isa Determine if input value has the specified data type.

isfloat Determine if input value is a floating-point array.

isnumeric Determine if input value is a numeric array.

eps Return the floating-point relative accuracy. This value
is the tolerance MATLAB uses in its calculations.

realmax Return the largest floating-point number your computer
can represent.

realmin Return the smallest floating-point number your
computer can represent.

Complex Number Functions

Function Description

complex Construct complex data from real and imaginary
components.

i or j Return the imaginary unit used in constructing complex
data.

real Return the real part of a complex number.

imag Return the imaginary part of a complex number.

isreal Determine if a number is real or imaginary.

4-27

4 Numeric Classes

Infinity and NaN Functions

Function Description

inf Return the IEEE value for infinity.

isnan Detect NaN elements of an array.

isinf Detect infinite elements of an array.

isfinite Detect finite elements of an array.

nan Return the IEEE value for Not a Number.

Class Identification Functions

Function Description

class Return data type (or class).

isa Determine if input value is of the specified data type.

isfloat Determine if input value is a floating-point array.

isinteger Determine if input value is an integer array.

isnumeric Determine if input value is a numeric array.

isreal Determine if input value is real.

whos Display the data type of input.

Output Formatting Functions

Function Description

format Control display format for output.

4-28

5

The Logical Class

• “Overview of the Logical Class” on page 5-2

• “Identifying Logical Arrays” on page 5-4

• “Functions that Return a Logical Result” on page 5-6

• “Using Logical Arrays in Conditional Statements” on page 5-9

• “Using Logical Arrays in Indexing” on page 5-10

5 The Logical Class

Overview of the Logical Class
The logical data type represents a logical true or false state using the
numbers 1 and 0, respectively. Certain MATLAB functions and operators
return logical true or false to indicate whether a certain condition was
found to be true or not. For example, the statement 50>40 returns a logical
true value.

Logical data does not have to be scalar; MATLAB supports arrays of logical
values as well. For example, the following statement returns a vector of
logicals indicating false for the first two elements and true for the last three:

[30 40 50 60 70] > 40
ans =

0 0 1 1 1

This statement returns a 4-by-4 array of logical values:

x = magic(4) >= 9
x =

1 0 0 1
0 1 1 0
1 0 0 1
0 1 1 0

The MATLAB functions that have names beginning with is (e.g., ischar,
issparse) also return a logical value or array:

a = [2.5 6.7 9.2 inf 4.8];

isfinite(a)
ans =

1 1 1 0 1

Logical arrays can also be sparse as long as they have no more than two
dimensions:

x = sparse(magic(20) > 395)
x =

(1,1) 1
(1,4) 1

5-2

Overview of the Logical Class

(1,5) 1
(20,18) 1
(20,19) 1

5-3

5 The Logical Class

Identifying Logical Arrays

In this section...

“Function Summary” on page 5-4

“Examples of Identifying Logical Arrays” on page 5-4

Function Summary
This table shows the commands you can use to determine whether or not an
array x is logical. The last function listed, cellfun, operates on cell arrays.

Command Operation

whos(x) Display value and data type for x.

islogical(x) Return true if array is logical.

isa(x, 'logical') Return true if array is logical.

class(x) Return string with data type name.

cellfun('islogical', x) Check each cell array element for logical.

Examples of Identifying Logical Arrays
Create a 3-by-6 array of logicals and use the whos function to identify the size,
byte count, and class (i.e., data type) of the array.

A = gallery('uniformdata',[3,6],0) > .5
A =

1 0 0 0 1 0
0 1 0 1 1 1
1 1 1 1 0 1

whos A
Name Size Bytes Class Attributes

A 3x6 18 logical

Find the class of each of these expressions:

5-4

Identifying Logical Arrays

B = logical(-2.8); C = false; D = 50>40; E = isinteger(4.9);

whos B C D E
Name Size Bytes Class Attributes

B 1x1 1 logical
C 1x1 1 logical
D 1x1 1 logical
E 1x1 1 logical

Display the class of A:

A = gallery('uniformdata',[3,6],0) > .5;
fprintf('A is a %s\n', class(A));

A is a logical

Create cell array C and use islogical to identify the logical elements:

C = {1, 0, true, false, pi, A};
cellfun('islogical', C)
ans =

0 0 1 1 0 1

5-5

5 The Logical Class

Functions that Return a Logical Result

In this section...

“Overview” on page 5-6

“Examples of Functions that Return a Logical Result” on page 5-6

Overview
This table shows some of the MATLAB operations that return a logical true
or false. Most mathematics operations are not supported on logical values.

Function Operation

true, false Setting value to true or false

logical Numeric to logical conversion

& (and), | (or), ~ (not), xor, any, all Logical operations

&&, || Short-circuit AND and OR

== (eq), ~= (ne), < (lt), > (gt), <= (le),
>= (ge)

Relational operations

All is* functions, cellfun Test operations

strcmp, strncmp, strcmpi, strncmpi String comparisons

Examples of Functions that Return a Logical Result
MATLAB functions that test the state of a variable or expression return
a logical result:

A = isstrprop('abc123def', 'alpha')
A =

1 1 1 0 0 0 1 1 1

Logical functions such as xor return a logical result:

xor([1 0 'ab' 2.4], [0 0 'ab', 0])
ans =

1 0 0 1

5-6

../ref/is.html

Functions that Return a Logical Result

Note however that the bitwise operators do not return a logical:

X = bitxor(3, 12);
whos X

Name Size Bytes Class Attributes

X 1x1 8 double

String comparison functions also return a logical:

S = 'D:\matlab\mfiles\test19.m';
strncmp(S, 'D:\matlab', 9)
ans =

1

Note the difference between the elementwise and short-circuit logical
operators. Short-circuit operators, such as && and ||, test only as much of the
input expression as necessary. In the second part of this example, it makes
no difference that B is undefined because the state of A alone determines
that the expression is false:

A = 0;
A & B
Undefined function or variable 'B'.

A && B
ans =

0

One way of implementing an infinite loop is to use the while function along
with the logical constant true:

while true
a = []; b = [];
a = input('Enter username: ', 's');

if ~isempty(a)
b = input('Enter password: ', 's');
end

if ~isempty(b)

5-7

5 The Logical Class

disp 'Attempting to log in to account ...'
break
end

end

5-8

Using Logical Arrays in Conditional Statements

Using Logical Arrays in Conditional Statements
Conditional statements are useful when you want to execute a block of code
only when a certain condition is met. For example, the sprintf command
shown below is valid only if str is a nonempty string:

str = input('Enter input string: ', 's');
if ~isempty(str) && ischar(str)

sprintf('Input string is ''%s''', str)
end

Now run the code:

Enter input string: Hello
ans =

Input string is 'Hello'

5-9

5 The Logical Class

Using Logical Arrays in Indexing
A logical matrix provides a different type of array indexing in MATLAB.
While most indices are numeric, indicating a certain row or column number,
logical indices are positional. That is, it is the position of each 1 in the logical
matrix that determines which array element is being referred to.

See “Using Logicals in Array Indexing” for more information on this subject.

5-10

6

Characters and Strings

• “Creating Character Arrays” on page 6-2

• “Cell Arrays of Strings” on page 6-7

• “Formatting Strings” on page 6-10

• “String Comparisons” on page 6-25

• “Searching and Replacing” on page 6-28

• “Converting from Numeric to String” on page 6-30

• “Converting from String to Numeric” on page 6-32

• “Function Summary” on page 6-35

6 Characters and Strings

Creating Character Arrays

In this section...

“Creating a Character String” on page 6-2

“Creating a Rectangular Character Array” on page 6-3

“Identifying Characters in a String” on page 6-4

“Working with Space Characters” on page 6-5

“Expanding Character Arrays” on page 6-6

Creating a Character String
Create a string by enclosing a sequence of letters in single quotation marks,
such as

myString = 'Hello, world';

If the text contains a single quotation mark, include two quotation marks
within the string definition.

otherString = 'You''re right';

In the MATLAB computing environment, all variables are arrays, and strings
are of type char (character arrays).

whos myString

Name Size Bytes Class Attributes

myString 1x12 24 char

Functions such as uint16 convert characters to their numeric codes:

str_numeric = uint16(str)

str_numeric =
72 101 108 108 111

The char function converts the integer vector back to characters:

6-2

Creating Character Arrays

str_alpha = char([72 101 108 108 111])

str_alpha =
Hello

Creating a Rectangular Character Array
You can join two or more strings together to create a new character array.
This is called concatenation and is explained for numeric arrays in the
section “Concatenating Matrices”. As with numeric arrays, you can combine
character arrays vertically or horizontally to create a new character array.

Alternatively, combine strings into a cell array. Cell arrays are flexible
containers that allow you to easily combine strings of varying length.

Combining Strings Vertically
To combine strings into a two-dimensional character array, use either of these
methods:

• Apply the MATLAB concatenation operator, []. Separate each row with a
semicolon (;). Each row must contain the same number of characters. For
example, combine three strings of equal length:

dev_title = ['Thomas R. Lee'; ...
'Sr. Developer'; ...
'SFTware Corp.'];

If the strings have different lengths, pad with space characters as needed.
For example:

mgr_title = ['Harold A. Jorgensen '; ...
'Assistant Project Manager'; ...
'SFTware Corp. '];

• Call the char function. If the strings are different length, char pads the
shorter strings with trailing blanks so that each row has the same number
of characters. For example, combine three strings of different lengths:

mgr_title = char('Harold A. Jorgensen', ...
'Assistant Project Manager', 'SFTware Corp.');

6-3

../ref/specialcharacters.html

6 Characters and Strings

The char function creates a 3-by-25 character array mgr_title.

Combining Strings Horizontally
To combine strings into a single row vector, use either of these methods:

• Apply the MATLAB concatenation operator, []. Separate the input strings
with a comma or a space. This method preserves any trailing spaces in the
input arrays. For example, combine several strings:

name = 'Thomas R. Lee';
title = 'Sr. Developer';
company = 'SFTware Corp.';

full_name = [name ', ' title ', ' company]

MATLAB returns

full_name =
Thomas R. Lee, Sr. Developer, SFTware Corp.

• Call the string concatenation function, strcat. This method removes
trailing spaces in the inputs. For example, combine strings to create a
hypothetical email address:

name = 'myname ';
domain = 'mydomain ';
ext = 'com ';

address = strcat(name, '@', domain, '.', ext)

MATLAB returns

address =
myname@mydomain.com

Identifying Characters in a String
Use any of the following functions to identify a character or string, or certain
characters in a string:

6-4

../ref/specialcharacters.html

Creating Character Arrays

Function Description

ischar Determine whether the input is a character array.

isletter Find all alphabetic letters in the input string.

isspace Find all space characters in the input string.

isstrprop Find all characters of a specific category.

str = 'Find the space characters in this string';
% | | | | | |
% 5 9 15 26 29 34

find(isspace(str))
ans =

5 9 15 26 29 34

Working with Space Characters
The blanks function creates a string of space characters. The following
example creates a string of 15 space characters:

s = blanks(15)
s =

To make the example more useful, append a '|' character to the beginning
and end of the blank string so that you can see the output:

['|' s '|'] % Make result visible.
ans =

| |

Insert a few nonspace characters in the middle of the blank string:

s(6:10) = 'AAAAA';

['|' s '|'] % Make result visible.
ans =

| AAAAA |

You can justify the positioning of these characters to the left or right using
the strjust function:

6-5

6 Characters and Strings

sLeft = strjust(s, 'left');

['|' sLeft '|'] % Make result visible.
ans =

|AAAAA |

sRight = strjust(s, 'right');

['|' sRight '|'] % Make result visible.
ans =

| AAAAA|

Remove all trailing space characters with deblank:

sDeblank = deblank(s);

['|' sDeblank '|'] % Make result visible.
ans =

| AAAAA|

Remove all leading and trailing spaces with strtrim:

sTrim = strtrim(s);

['|' sTrim '|'] % Make result visible.
ans =

|AAAAA|

Expanding Character Arrays
Generally, MathWorks does not recommend expanding the size of an existing
character array by assigning additional characters to indices beyond the
bounds of the array such that part of the array becomes padded with zeros.

6-6

Cell Arrays of Strings

Cell Arrays of Strings

In this section...

“Converting to a Cell Array of Strings” on page 6-7

“Functions for Cell Arrays of Strings” on page 6-8

Converting to a Cell Array of Strings
Creating strings in a regular MATLAB array requires that all strings in the
array be of the same length. This often means that you have to pad blanks at
the end of strings to equalize their length. However, another type of MATLAB
array, the cell array, can hold different sizes and types of data in an array
without padding. Cell arrays provide a more flexible way to store strings of
varying length.

The cellstr function converts a character array into a cell array of strings.
Consider this character array:

data = ['Allison Jones';'Development ';'Phoenix '];

Each row of the matrix is padded so that all have equal length (in this case,
13 characters).

Now use cellstr to create a column vector of cells, each cell containing one
of the strings from the data array:

celldata = cellstr(data)
celldata =

'Allison Jones'
'Development'
'Phoenix'

Note that the cellstr function strips off the blanks that pad the rows of the
input string matrix:

length(celldata{3})
ans =

7

6-7

6 Characters and Strings

The iscellstr function determines if the input argument is a cell array of
strings. It returns a logical 1 (true) in the case of celldata:

iscellstr(celldata)
ans =

1

Use char to convert back to a standard padded character array:

strings = char(celldata)
strings =

Allison Jones
Development
Phoenix

length(strings(3,:))
ans =

13

For more information on cell arrays, see “Access Data in a Cell Array” on
page 8-5.

Functions for Cell Arrays of Strings
This table describes the MATLAB functions for working with cell arrays.

Function Description

cellstr Convert a character array to a cell array of strings.

char Convert a cell array of strings to a character array.

deblank Remove trailing blanks from a string.

iscellstr Return true for a cell array of strings.

sort Sort elements in ascending or descending order.

strcat Concatenate strings.

strcmp Compare strings.

You can also use the following set functions with cell arrays of strings.

6-8

Cell Arrays of Strings

Function Description

intersect Set the intersection of two vectors.

ismember Detect members of a set.

setdiff Return the set difference of two vectors.

setxor Set the exclusive OR of two vectors.

union Set the union of two vectors.

unique Set the unique elements of a vector.

6-9

6 Characters and Strings

Formatting Strings

In this section...

“Functions that Use Format Strings” on page 6-10

“The Format String” on page 6-11

“Input Value Arguments” on page 6-12

“The Formatting Operator” on page 6-13

“Constructing the Formatting Operator” on page 6-14

“Setting Field Width and Precision” on page 6-20

“Restrictions for Using Identifiers” on page 6-23

Functions that Use Format Strings
The following MATLAB functions offer the capability to compose a string that
includes ordinary text and data formatted to your specification:

• sprintf — Write formatted data to an output string

• fprintf—Write formatted data to an output file or the Command Window

• warning— Display formatted data in a warning message

• error— Display formatted data in an error message and abort

• assert— Generate an error when a condition is violated

• MException — Capture error information

The syntax of each of these functions includes formatting operators similar
to those used by the printf function in the C programming language. For
example, %s tells MATLAB to interpret an input value as a string, and %d
means to format an integer using decimal notation.

The general formatting syntax for these functions is

functionname(..., format_string, value1, value2, ..., valueN)

6-10

Formatting Strings

where the format_string argument expresses the basic content and
formatting of the final output string, and the value arguments that follow
supply data values to be inserted into the string.

Here is a sample sprintf statement, also showing the resulting output string:

sprintf('The price of %s on %d/%d/%d was $%.2f.', ...
'bread', 7, 1, 2006, 2.49)

ans =
The price of bread on 7/1/2006 was $2.49.

Note The examples in this section of the documentation use only the sprintf
function to demonstrate how string formatting works. However, you can run
the examples using the fprintf, warning, and error functions as well.

The Format String
The first input argument in the sprintf statement shown above is the
format_string:

'The price of %s on %d/%d/%d was $%.2f.'

This argument can include ordinary text, formatting operators and, in some
cases, special characters. The formatting operators for this particular string
are: %s, %d, %d, %d, and %.2f.

Following the format_string argument are five additional input arguments,
one for each of the formatting operators in the string:

'bread', 7, 1, 2006, 2.49

When MATLAB processes the format string, it replaces each operator with
one of these input values.

Special Characters
Special characters are a part of the text in the string. But, because they
cannot be entered as ordinary text, they require a unique character sequence
to represent them. Use any of the following character sequences to insert
special characters into the output string.

6-11

6 Characters and Strings

To Insert a . . . Use . . .

Single quotation mark ''

Percent character %%

Backslash \\

Alarm \a

Backspace \b

Form feed \f

New line \n

Carriage return \r

Horizontal tab \t

Vertical tab \v

Hexadecimal number, N \xN

Octal number, N \N

Input Value Arguments
In the syntax

functionname(..., format_string, value1, value2, ..., valueN)

The value arguments must immediately follow format_string in the
argument list. In most instances, you supply one of these value arguments
for each formatting operator used in the format_string. Scalars, vectors,
and numeric and character arrays are valid value arguments. You cannot
use cell arrays or structures.

If you include fewer formatting operators than there are values to insert,
MATLAB reuses the operators on the additional values. This example shows
two formatting operators and six values to insert into the string:

sprintf('%s = %d\n', 'A', 479, 'B', 352, 'C', 651)
ans =

A = 479
B = 352
C = 651

6-12

Formatting Strings

You can also specify multiple value arguments as a vector or matrix. The
format_string needs one %s operator for the entire matrix or vector:

mvec = [77 65 84 76 65 66];

sprintf('%s ', char(mvec))
ans =

MATLAB

Sequential and Numbered Argument Specification

You can place value arguments in the argument list either sequentially (that
is, in the same order in which their formatting operators appear in the string),
or by identifier (adding a number to each operator that identifies which value
argument to replace it with). By default, MATLAB uses sequential ordering.

To specify arguments by a numeric identifier, add a positive integer followed
by a $ sign immediately after the % sign in the operator. Numbered argument
specification is explained in more detail under the topic “Value Identifiers”
on page 6-20.

Ordered Sequentially Ordered By Identifier

sprintf('%s %s %s', ...
'1st', '2nd', '3rd')

ans =
1st 2nd 3rd

sprintf('%3$s %2$s %1$s', ...
'1st', '2nd', '3rd')

ans =
3rd 2nd 1st

The Formatting Operator
Formatting operators tell MATLAB how to format the numeric or character
value arguments and where to insert them into the string. These operators
control the notation, alignment, significant digits, field width, and other
aspects of the output string.

A formatting operator begins with a % character, which may be followed by a
series of one or more numbers, characters, or symbols, each playing a role in
further defining the format of the insertion value. The final entry in this series
is a single conversion character that MATLAB uses to define the notation

6-13

6 Characters and Strings

style for the inserted data. Conversion characters used in MATLAB are based
on those used by the printf function in the C programming language.

Here is a simple example showing five formatting variations for a common
value:

A = pi*100*ones(1,5);

sprintf(' %f \n %.2f \n %+.2f \n %12.2f \n %012.2f \n', A)
ans =

314.159265 % Display in fixed-point notation (%f)
314.16 % Display 2 decimal digits (%.2f)
+314.16 % Display + for positive numbers (%+.2f)

314.16 % Set width to 12 characters (%12.2f)
000000314.16 % Replace leading spaces with 0 (%012.2f)

Constructing the Formatting Operator
The fields that make up a formatting operator in MATLAB are as shown here,
in the order they appear from right to left in the operator. The rightmost field,
the conversion character, is required; the five to the left of that are optional.
Each of these fields is explained in a section below:

• Conversion Character — Specifies the notation of the output.

• Subtype — Further specifies any nonstandard types.

• Precision — Sets the number of digits to display to the right of the decimal
point, or the number of significant digits to display.

• Field Width — Sets the minimum number of digits to display.

• Flags — Controls the alignment, padding, and inclusion of plus or minus
signs.

• Value Identifiers — Map formatting operators to value input arguments.
Use the identifier field when value arguments are not in a sequential order
in the argument list.

Here is an example of a formatting operator that uses all six fields. (Space
characters are not allowed in the operator. They are shown here only to
improve readability of the figure).

6-14

Formatting Strings

���������	�
����

������������������������������

�����
 ��������������!����

"��#$�

An alternate syntax, that enables you to supply values for the field width and
precision fields from values in the argument list, is shown below. See the
section “Specifying Field Width and Precision Outside the format String” on
page 6-21 for information on when and how to use this syntax. (Again, space
characters are shown only to improve readability of the figure.)

Each field of the formatting operator is described in the following sections.
These fields are covered as they appear going from right to left in the
formatting operator, starting with the Conversion Character and ending
with the Identifier field.

Conversion Character
The conversion character specifies the notation of the output. It consists of
a single character and appears last in the format specifier. It is the only
required field of the format specifier other than the leading % character.

Specifier Description

c Single character

d Decimal notation (signed)

e Exponential notation (using a lowercase e as in 3.1415e+00)

E Exponential notation (using an uppercase E as in 3.1415E+00)

f Fixed-point notation

6-15

6 Characters and Strings

Specifier Description

g The more compact of %e or %f. (Insignificant zeros do not
print.)

G Same as %g, but using an uppercase E

o Octal notation (unsigned)

s String of characters

u Decimal notation (unsigned)

x Hexadecimal notation (using lowercase letters a–f)

X Hexadecimal notation (using uppercase letters A–F)

This example uses conversion characters to display the number 46 in decimal,
fixed-point, exponential, and hexadecimal formats:

A = 46*ones(1,4);

sprintf('%d %f %e %X', A)
ans =
46 46.000000 4.600000e+01 2E

Subtype
The subtype field is a single alphabetic character that immediately precedes
the conversion character. The following nonstandard subtype specifiers are
supported for the conversion characters %o, %x, %X, and %u.

b The underlying C data type is a double rather than an unsigned
integer. For example, to print a double-precision value in
hexadecimal, use a format like '%bx'.

t The underlying C data type is a float rather than an unsigned integer.

To specify the number of bits for the conversion of an integer value
(corresponding to conversion characters %d, %i, %u, %o, %x, or %X), use one of
the following subtypes.

6-16

Formatting Strings

l 64-bit value.

h 16-bit value.

Precision
precision in a formatting operator is a nonnegative integer that immediately
follows a period. For example, the specifier %7.3f, has a precision of 3.
For the %g specifier, precision indicates the number of significant digits to
display. For the %f, %e, and %E specifiers, precision indicates how many
digits to display to the right of the decimal point.

Here are some examples of how the precision field affects different types
of notation:

sprintf('%g %.2g %f %.2f', pi*50*ones(1,4))
ans =
157.08 1.6e+02 157.079633 157.08

Precision is not usually used in format specifiers for strings (i.e., %s). If you
do use it on a string and if the value p in the precision field is less than the
number of characters in the string, MATLAB displays only p characters of the
string and truncates the rest.

You can also supply the value for a precision field from outside of the format
specifier. See the section “Specifying Field Width and Precision Outside the
format String” on page 6-21 for more information on this.

For more information on the use of precision in formatting, see “Setting
Field Width and Precision” on page 6-20.

Field Width
Field width in a formatting operator is a nonnegative integer that tells
MATLAB the minimum number of digits or characters to use when formatting
the corresponding input value. For example, the specifier %7.3f, has a width
of 7.

Here are some examples of how the width field affects different types of
notation:

6-17

6 Characters and Strings

sprintf('|%e|%15e|%f|%15f|', pi*50*ones(1,4))
ans =
|1.570796e+02| 1.570796e+02|157.079633| 157.079633|

When used on a string, the field width can determine whether MATLAB
pads the string with spaces. If width is less than or equal to the number of
characters in the string, it has no effect.

sprintf('%30s', 'Pad left with spaces')
ans =

Pad left with spaces

You can also supply a value for field width from outside of the format
specifier. See the section “Specifying Field Width and Precision Outside the
format String” on page 6-21 for more information on this.

For more information on the use of field width in formatting, see “Setting
Field Width and Precision” on page 6-20.

Flags
You can control the output using any of these optional flags:

Character Description Example

A minus sign (-) Left-justifies the
converted argument
in its field.

%-5.2d

A plus sign (+) Always prints a sign
character (+ or –).

%+5.2d

A space () Inserts a space before the
value.

% 5.2f

6-18

Formatting Strings

Character Description Example

Zero (0) Pads with zeros rather
than spaces.

%05.2f

A pound sign (#) Modifies selected numeric
conversions:

• For %o, %x, or %X, print
0, 0x, or 0X prefix.

• For %f, %e, or %E, print
decimal point even
when precision is 0.

• For %g or %G, do not
remove trailing zeros
or decimal point.

%#5.0f

Right- and left-justify the output. The default is to right-justify:

sprintf('right-justify: %12.2f\nleft-justify: %-12.2f', ...
12.3, 12.3)

ans =
right-justify: 12.30
left-justify: 12.30

Display a + sign for positive numbers. The default is to omit the + sign:

sprintf('no sign: %12.2f\nsign: %+12.2f', ...
12.3, 12.3)

ans =
no sign: 12.30
sign: +12.30

Pad to the left with spaces or zeros. The default is to use space-padding:

sprintf('space-padded: %12.2f\nzero-padded: %012.2f', ...
5.2, 5.2)

ans =
space-padded: 5.20

6-19

6 Characters and Strings

zero-padded: 000000005.20

Note You can specify more than one flag in a formatting operator.

Value Identifiers
By default, MATLAB inserts data values from the argument list into the
string in a sequential order. If you have a need to use the value arguments
in a nonsequential order, you can override the default by using a numeric
identifier in each format specifier. Specify nonsequential arguments with an
integer immediately following the % sign, followed by a $ sign.

Ordered Sequentially Ordered By Identifier

sprintf('%s %s %s', ...
'1st', '2nd', '3rd')

ans =
1st 2nd 3rd

sprintf('%3$s %2$s %1$s', ...
'1st', '2nd', '3rd')

ans =
3rd 2nd 1st

Setting Field Width and Precision
This section provides further information on the use of the field width and
precision fields of the formatting operator:

• “Effect on the Output String” on page 6-20

• “Specifying Field Width and Precision Outside the format String” on page
6-21

• “Using Identifiers In the Width and Precision Fields” on page 6-22

Effect on the Output String
The figure below illustrates the way in which the field width and precision
settings affect the output of the string formatting functions. In this figure,
the zero following the % sign in the formatting operator means to add leading
zeros to the output string rather than space characters:

6-20

Formatting Strings

�	�
%�&'(��)
�� ���	�
%�'

��*�����$���������$�
���������������������

�����������$���������$�
��������������������

������!����+�!�,�)
$��������+���$�,�� �����������$����������

������������$�������
�����������������

���-����$������

.���������!�������/
���0��������������
���������!����1����

General rules for formatting

• If precision is not specified, it defaults to 6.

• If precision (p) is less than the number of digits in the fractional part of the
input value (f), then only p digits are shown to the right of the decimal
point in the output, and that fractional value is rounded.

• If precision (p) is greater than the number of digits in the fractional part of
the input value (f), then p digits are shown to the right of the decimal point
in the output, and the fractional part is extended to the right with p-f zeros.

• If field width is not specified, it defaults to precision + 1 + the number of
digits in the whole part of the input value.

• If field width (w) is greater than p+1 plus the number of digits in the whole
part of the input value (n), then the whole part of the output value is
extended to the left with w-(n+1+p) space characters or zeros, depending
on whether or not the zero flag is set in the Flags field. The default is to
extend the whole part of the output with space characters.

Specifying Field Width and Precision Outside the format String
To specify field width or precision using values from a sequential argument
list, use an asterisk (*) in place of the field width or precision field of the
formatting operator.

6-21

6 Characters and Strings

This example formats and displays three numbers. The formatting operator
for the first, %*f, has an asterisk in the field width location of the formatting
operator, specifying that just the field width, 15, is to be taken from the
argument list. The second operator, %.*f puts the asterisk after the decimal
point meaning, that it is the precision that is to take its value from the
argument list. And the third operator, %*.*f, specifies both field width and
precision in the argument list:

sprintf('%*f %.*f %*.*f', ...
15, 123.45678, ... % Width for 123.45678 is 15
3, 16.42837, ... % Precision for rand*20 is .3
6, 4, pi) % Width & Precision for pi is 6.4

ans =
123.456780 16.428 3.1416

You can mix the two styles. For example, this statement gets the field width
from the argument list and the precision from the format string:

sprintf('%*.2f', 5, 123.45678)
ans =

123.46

Using Identifiers In the Width and Precision Fields
You can also derive field width and precision values from a nonsequential
(i.e., numbered) argument list. Inside the formatting operator, specify field
width and/or precision with an asterisk followed by an identifier number,
followed by a $ sign.

This example from the previous section shows how to obtain field width and
precision from a sequential argument list:

sprintf('%*f %.*f %*.*f', ...
15, 123.45678, ...
3, 16.42837, ...
6, 4, pi)

ans =
123.456780 16.428 3.1416

6-22

Formatting Strings

Here is an example of how to do the same thing using numbered ordering.
Field width for the first output value is 15, precision for the second value is
3, and field width and precision for the third value is 6 and 4, respectively.
If you specify field width or precision with identifiers, then you must specify
the value with an identifier as well:

sprintf('%1$*4$f %2$.*5$f %3$*6$.*7$f', ...
123.45678, 16.42837, pi, 15, 3, 6, 4)

ans =
123.456780 16.428 3.1416

Restrictions for Using Identifiers
If any of the formatting operators in a string include an identifier field, then
all of the operators in that string must do the same; you cannot use both
sequential and nonsequential ordering in the same function call.

Valid Syntax Invalid Syntax

sprintf('%d %d %d %d', ...
1, 2, 3, 4)

ans =
1 2 3 4

sprintf('%d %3$d %d %d', ...
1, 2, 3, 4)

ans =
1

If your command provides more value arguments than there are formatting
operators in the format string, MATLAB reuses the operators. However,
MATLAB allows this only for commands that use sequential ordering.
You cannot reuse formatting operators when making a function call with
numbered ordering of the value arguments.

Valid Syntax Invalid Syntax

sprintf('%d', 1, 2, 3, 4)
ans =

1234

sprintf('%1$d', 1, 2, 3, 4)
ans =

1

Also, do not use identifiers when the value arguments are in the form of a
vector or array:

6-23

6 Characters and Strings

Valid Syntax Invalid Syntax

v = [1.4 2.7 3.1];

sprintf('%.4f %.4f %.4f', v)
ans =

1.4000 2.7000 3.1000

v = [1.4 2.7 3.1];

sprintf('%3$.4f %1$.4f %2$.4f', v)
ans =

Empty string: 1-by-0

6-24

String Comparisons

String Comparisons
There are several ways to compare strings and substrings:

• You can compare two strings, or parts of two strings, for equality.

• You can compare individual characters in two strings for equality.

• You can categorize every element within a string, determining whether
each element is a character or white space.

These functions work for both character arrays and cell arrays of strings.

Comparing Strings for Equality
You can use any of four functions to determine if two input strings are
identical:

• strcmp determines if two strings are identical.

• strncmp determines if the first n characters of two strings are identical.

• strcmpi and strncmpi are the same as strcmp and strncmp, except that
they ignore case.

Consider the two strings

str1 = 'hello';
str2 = 'help';

Strings str1 and str2 are not identical, so invoking strcmp returns logical 0
(false). For example,

C = strcmp(str1,str2)
C =

0

Note For C programmers, this is an important difference between the
MATLAB strcmp and C strcmp() functions, where the latter returns 0 if
the two strings are the same.

6-25

6 Characters and Strings

The first three characters of str1 and str2 are identical, so invoking strncmp
with any value up to 3 returns 1:

C = strncmp(str1, str2, 2)
C =

1

These functions work cell-by-cell on a cell array of strings. Consider the two
cell arrays of strings

A = {'pizza'; 'chips'; 'candy'};
B = {'pizza'; 'chocolate'; 'pretzels'};

Now apply the string comparison functions:

strcmp(A,B)
ans =

1
0
0

strncmp(A,B,1)
ans =

1
1
0

Comparing for Equality Using Operators
You can use MATLAB relational operators on character arrays, as long as
the arrays you are comparing have equal dimensions, or one is a scalar. For
example, you can use the equality operator (==) to determine where the
matching characters are in two strings:

A = 'fate';
B = 'cake';

A == B
ans =

0 1 0 1

All of the relational operators (>, >=, <, <=, ==, ~=) compare the values of
corresponding characters.

6-26

../ref/relationaloperators.html

String Comparisons

Categorizing Characters Within a String
There are three functions for categorizing characters inside a string:

1 isletter determines if a character is a letter.

2 isspace determines if a character is white space (blank, tab, or new line).

3 isstrprop checks characters in a string to see if they match a category
you specify, such as

• Alphabetic

• Alphanumeric

• Lowercase or uppercase

• Decimal digits

• Hexadecimal digits

• Control characters

• Graphic characters

• Punctuation characters

• Whitespace characters

For example, create a string named mystring:

mystring = 'Room 401';

isletter examines each character in the string, producing an output vector
of the same length as mystring:

A = isletter(mystring)
A =

1 1 1 1 0 0 0 0

The first four elements in A are logical 1 (true) because the first four
characters of mystring are letters.

6-27

6 Characters and Strings

Searching and Replacing
MATLAB provides several functions for searching and replacing characters in
a string. (MATLAB also supports search and replace operations using regular
expressions. See Regular Expressions.)

Consider a string named label:

label = 'Sample 1, 10/28/95';

The strrep function performs the standard search-and-replace operation.
Use strrep to change the date from '10/28' to '10/30':

newlabel = strrep(label, '28', '30')
newlabel =

Sample 1, 10/30/95

strfind returns the starting position of a substring within a longer string. To
find all occurrences of the string 'amp' inside label, use

position = strfind(label, 'amp')
position =

2

The position within label where the only occurrence of 'amp' begins is the
second character.

The textscan function parses a string to identify numbers or substrings.
Describe each component of the string with conversion specifiers, such as
%s for strings, %d for integers, or %f for floating-point numbers. Optionally,
include any literal text to ignore.

For example, identify the sample number and date string from label:

parts = textscan(label, 'Sample %d, %s');
parts{:}

ans =
1

ans =
'10/28/95'

6-28

Searching and Replacing

To parse strings in a cell array, use the strtok function. For example:

c = {'all in good time'; ...
'my dog has fleas'; ...
'leave no stone unturned'};

first_words = strtok(c)

6-29

6 Characters and Strings

Converting from Numeric to String

In this section...

“Function Summary” on page 6-30

“Converting to a Character Equivalent” on page 6-31

“Converting to a String of Numbers” on page 6-31

“Converting to a Specific Radix” on page 6-31

Function Summary
The functions listed in this table provide a number of ways to convert numeric
data to character strings.

Function Description Example

char Convert a positive integer to an equivalent
character. (Truncates any fractional parts.)

[72 105] → 'Hi'

int2str Convert a positive or negative integer to a
character type. (Rounds any fractional parts.)

[72 105]→ '72 105'

num2str Convert a numeric type to a character type of the
specified precision and format.

[72 105] →
'72/105/' (format
set to %1d/)

mat2str Convert a numeric type to a character type of the
specified precision, returning a string MATLAB
can evaluate.

[72 105] → '[72
105]'

dec2hex Convert a positive integer to a character type of
hexadecimal base.

[72 105]→ '48 69'

dec2bin Convert a positive integer to a character type of
binary base.

[72 105]→ '1001000
1101001'

dec2base Convert a positive integer to a character type of
any base from 2 through 36.

[72 105] → '110
151' (base set to 8)

6-30

Converting from Numeric to String

Converting to a Character Equivalent
The char function converts integers to Unicode® character codes and returns
a string composed of the equivalent characters:

x = [77 65 84 76 65 66];
char(x)
ans =

MATLAB

Converting to a String of Numbers
The int2str, num2str, and mat2str functions convert numeric values to
strings where each character represents a separate digit of the input value.
The int2str and num2str functions are often useful for labeling plots. For
example, the following lines use num2str to prepare automated labels for the
x-axis of a plot:

function plotlabel(x, y)
plot(x, y)
str1 = num2str(min(x));
str2 = num2str(max(x));
out = ['Value of f from ' str1 ' to ' str2];
xlabel(out);

Converting to a Specific Radix
Another class of conversion functions changes numeric values into strings
representing a decimal value in another base, such as binary or hexadecimal
representation. This includes dec2hex, dec2bin, and dec2base.

6-31

6 Characters and Strings

Converting from String to Numeric

In this section...

“Function Summary” on page 6-32

“Converting from a Character Equivalent” on page 6-33

“Converting from a Numeric String” on page 6-33

“Converting from a Specific Radix” on page 6-34

Function Summary
The functions listed in this table provide a number of ways to convert
character strings to numeric data.

Function Description Example

uintN (e.g., uint8) Convert a character to an integer code that
represents that character.

'Hi' → 72 105

str2num Convert a character type to a numeric type. '72 105'→ [72 105]

str2double Similar to str2num, but offers better
performance and works with cell arrays of
strings.

{'72' '105'} → [72
105]

hex2num Convert a numeric type to a character type
of specified precision, returning a string that
MATLAB can evaluate.

'A' →
'-1.4917e-154'

hex2dec Convert a character type of hexadecimal base
to a positive integer.

'A' → 10

bin2dec Convert a positive integer to a character type
of binary base.

'1010' → 10

base2dec Convert a positive integer to a character type
of any base from 2 through 36.

'12' → 10 (if base ==
8)

6-32

Converting from String to Numeric

Converting from a Character Equivalent
Character arrays store each character as a 16-bit numeric value. Use one of
the integer conversion functions (e.g., uint8) or the double function to convert
strings to their numeric values, and char to revert to character representation:

name = 'Thomas R. Lee';

name = double(name)
name =

84 104 111 109 97 115 32 82 46 32 76 101 101

name = char(name)
name =

Thomas R. Lee

Converting from a Numeric String
Use str2num to convert a character array to the numeric value represented by
that string:

str = '37.294e-1';

val = str2num(str)
val =

3.7294

The str2double function converts a cell array of strings to the
double-precision values represented by the strings:

c = {'37.294e-1'; '-58.375'; '13.796'};

d = str2double(c)
d =

3.7294
-58.3750
13.7960

whos
Name Size Bytes Class

c 3x1 224 cell

6-33

6 Characters and Strings

d 3x1 24 double

Converting from a Specific Radix
To convert from a character representation of a nondecimal number to the
value of that number, use one of these functions: hex2num, hex2dec, bin2dec,
or base2dec.

The hex2num and hex2dec functions both take hexadecimal (base 16) inputs,
but hex2num returns the IEEE double-precision floating-point number it
represents, while hex2dec converts to a decimal integer.

6-34

Function Summary

Function Summary
MATLAB provides these functions for working with character arrays:

• Functions to Create Character Arrays on page 6-35

• Functions to Modify Character Arrays on page 6-35

• Functions to Read and Operate on Character Arrays on page 6-36

• Functions to Search or Compare Character Arrays on page 6-36

• Functions to Determine Class or Content on page 6-36

• Functions to Convert Between Numeric and String Classes on page 6-37

• Functions to Work with Cell Arrays of Strings as Sets on page 6-37

Functions to Create Character Arrays

Function Description

'str' Create the string specified between quotes.

blanks Create a string of blanks.

sprintf Write formatted data to a string.

strcat Concatenate strings.

char Concatenate strings vertically.

Functions to Modify Character Arrays

Function Description

deblank Remove trailing blanks.

lower Make all letters lowercase.

sort Sort elements in ascending or descending order.

strjust Justify a string.

strrep Replace one string with another.

strtrim Remove leading and trailing white space.

upper Make all letters uppercase.

6-35

6 Characters and Strings

Functions to Read and Operate on Character Arrays

Function Description

eval Execute a string with MATLAB expression.

sscanf Read a string under format control.

Functions to Search or Compare Character Arrays

Function Description

regexp Match regular expression.

strcmp Compare strings.

strcmpi Compare strings, ignoring case.

strfind Find one string within another.

strncmp Compare the first N characters of strings.

strncmpi Compare the first N characters, ignoring case.

strtok Find a token in a string.

textscan Read data from a string.

Functions to Determine Class or Content

Function Description

iscellstr Return true for a cell array of strings.

ischar Return true for a character array.

isletter Return true for letters of the alphabet.

isstrprop Determine if a string is of the specified category.

isspace Return true for white-space characters.

6-36

Function Summary

Functions to Convert Between Numeric and String Classes

Function Description

char Convert to a character or string.

cellstr Convert a character array to a cell array of strings.

double Convert a string to numeric codes.

int2str Convert an integer to a string.

mat2str Convert a matrix to a string you can run eval on.

num2str Convert a number to a string.

str2num Convert a string to a number.

str2double Convert a string to a double-precision value.

Functions to Work with Cell Arrays of Strings as Sets

Function Description

intersect Set the intersection of two vectors.

ismember Detect members of a set.

setdiff Return the set difference of two vectors.

setxor Set the exclusive OR of two vectors.

union Set the union of two vectors.

unique Set the unique elements of a vector.

6-37

6 Characters and Strings

6-38

7

Structures

• “Create a Structure Array” on page 7-2

• “Access Data in a Structure Array” on page 7-6

• “Concatenate Structures” on page 7-9

• “Generate Field Names from Variables” on page 7-11

• “Access Data in Nested Structures” on page 7-12

• “Access Elements of a Nonscalar Struct Array” on page 7-14

• “Ways to Organize Data in Structure Arrays” on page 7-16

• “Memory Requirements for a Structure Array” on page 7-20

7 Structures

Create a Structure Array
This example shows how to create a structure array. A structure is a data
type that groups related data using data containers called fields. Each field
can contain data of any type or size.

Store a patient record in a scalar structure with fields name, billing, and
test.

patient.name = 'John Doe';
patient.billing = 127.00;
patient.test = [79, 75, 73; 180, 178, 177.5; 220, 210, 205];
patient

7-2

Create a Structure Array

patient =

name: 'John Doe'
billing: 127

test: [3x3 double]

Add records for other patients to the array by including subscripts after the
array name.

patient(2).name = 'Ann Lane';
patient(2).billing = 28.50;
patient(2).test = [68, 70, 68; 118, 118, 119; 172, 170, 169];
patient

7-3

7 Structures

patient =

1x2 struct array with fields:

name
billing
test

Each patient record in the array is a structure of class struct. An array of
structures is often referred to as a struct array. Like other MATLAB arrays, a
struct array can have any dimensions.

A struct array has the following properties:

• All structs in the array have the same number of fields.

• All structs have the same field names.

• Fields of the same name in different structs can contain different types
or sizes of data.

Any unspecified fields for new structs in the array contain empty arrays.

patient(3).name = 'New Name';
patient(3)

ans =

name: 'New Name'
billing: []

test: []

Access data in the structure array to find how much the first patient owes,
and to create a bar graph of his test results.

amount_due = patient(1).billing

7-4

Create a Structure Array

bar(patient(1).test)
title(['Test Results for ', patient(1).name])

amount_due =

127

7-5

7 Structures

Access Data in a Structure Array
This example shows how to access the contents of a structure array. To
run the code in this example, load several variables into a scalar (1-by-1)
structure named S.

S = load('clown.mat')

The variables from the file (X, caption, and map) are now fields in the struct.

S =
X: [200x320 double]

map: [81x3 double]
caption: [2x1 char]

Access the data using dot notation of the form structName.fieldName. For
example, pass the numeric data in field X to the image function:

image(S.X)
colormap(S.map)

To access part of a field, add indices as appropriate for the size and type of data
in the field. For example, pass the upper left corner of X to the image function:

upperLeft = S.X(1:50,1:80);
image(upperLeft);

7-6

Access Data in a Structure Array

If a particular field contains a cell array, use curly braces to access the data,
such as S.cellField{1:50,1:80}.

Data in Nonscalar Structure Arrays

Create a nonscalar array by loading data from the file mandrill.mat into
a second element of array S:

S(2) = load('mandrill.mat')

Each element of a structure array must have the same fields. Both clown.mat
and mandrill.mat contain variables X, map, and caption.

S is a 1-by-2 array.

S =
1x2 struct array with fields:

X
map
caption

For nonscalar structures, the syntax for accessing a particular field is
structName(indices).fieldName. Redisplay the clown image, specifying the
index for the clown struct (1):

7-7

7 Structures

image(S(1).X)
colormap(S(1).map)

Add indices to select and redisplay the upper left corner of the field contents:

upperLeft = S(1).X(1:50,1:80);
image(upperLeft)

Note You can index into part of a field only when you refer to a single
element of a structure array. MATLAB does not support statements such
as S(1:2).X(1:50,1:80), which attempt to index into a field for multiple
elements of the structure.

Related Information

• “Access Data in Nested Structures” on page 7-12

• “Access Elements of a Nonscalar Struct Array” on page 7-14

• “Generate Field Names from Variables” on page 7-11

7-8

Concatenate Structures

Concatenate Structures
This example shows how to concatenate structure arrays using the []
operator. To concatenate structures, they must have the same set of fields,
but the fields do not need to contain the same sizes or types of data.

Create scalar (1-by-1) structure arrays struct1 and struct2, each with fields
a and b:

struct1.a = 'first';
struct1.b = [1,2,3];

struct2.a = 'second';
struct2.b = rand(5);

Just as concatenating two scalar values such as [1, 2] creates a 1-by-2
numeric array, concatenating struct1 and struct2,

combined = [struct1, struct2]

creates a 1-by-2 structure array:

combined =
1x2 struct array with fields:

a
b

When you want to access the contents of a particular field, specify the index of
the structure in the array. For example, access field a of the first structure:

combined(1).a

This code returns

ans =
first

Concatenation also applies to nonscalar structure arrays. For example, create
a 2-by-2 structure array named new:

new(1,1).a = 1; new(1,1).b = 10;
new(1,2).a = 2; new(1,2).b = 20;

7-9

7 Structures

new(2,1).a = 3; new(2,1).b = 30;
new(2,2).a = 4; new(2,2).b = 40;

Because the 1-by-2 structure combined and the 2-by-2 structure new both have
two columns, you can concatenate them vertically with a semicolon separator:

larger = [combined; new]

This code returns a 3-by-2 structure array,

larger =
3x2 struct array with fields:

a
b

where, for example,

larger(2,1).a =
1

For related information, see:

• “Creating and Concatenating Matrices”

• “Access Data in a Structure Array” on page 7-6

• “Access Elements of a Nonscalar Struct Array” on page 7-14

7-10

Generate Field Names from Variables

Generate Field Names from Variables
This example shows how to derive a structure field name at run time from a
variable or expression. The general syntax is

structName.(dynamicExpression)

where dynamicExpression is a variable or expression that returns a character
or string. Field names that you reference with expressions are called dynamic
field names.

For example, create a field name from the current date:

currentDate = datestr(now,'mmmdd');
myStruct.(currentDate) = [1,2,3]

If the current date reported by your system is February 29, then this code
assigns data to a field named Feb29:

myStruct =
Feb29: [1 2 3]

Field names, like variable names, must begin with a letter, can contain
letters, digits, or underscore characters, and are case sensitive. To avoid
potential conflicts, do not use the names of existing variables or functions as
field names. For more information, see “Variable Names” on page 1-8.

7-11

7 Structures

Access Data in Nested Structures
This example shows how to index into a structure that is nested within
another structure. The general syntax for accessing data in a particular field
is

structName(index).nestedStructName(index).fieldName(indices)

When a structure is scalar (1-by-1), you do not need to include the indices to
refer to the single element. For example, create a scalar structure s, where
field n is a nested scalar structure with fields a, b, and c:

s.n.a = ones(3);
s.n.b = eye(4);
s.n.c = magic(5);

Access the third row of field b:

third_row_b = s.n.b(3,:)

Variable third_row_b contains the third row of eye(4).

third_row_b =
0 0 1 0

Expand s so that both s and n are nonscalar (1-by-2):

s(1).n(2).a = 2 * ones(3);
s(1).n(2).b = 2 * eye(4);
s(1).n(2).c = 2 * magic(5);

s(2).n(1).a = '1a'; s(2).n(2).a = '2a';
s(2).n(1).b = '1b'; s(2).n(2).b = '2b';
s(2).n(1).c = '1c'; s(2).n(2).c = '2c';

Structure s now contains the data shown in the following figure.

7-12

Access Data in Nested Structures

s(1)

.n(1) .a 1 1 1
1 1 1
1 1 1

.b 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.c 17 24 1 8 15
23 5 7 14 16
 4 6 13 20 22
10 12 19 21 3
11 18 25 2 9

.n(2) 2 2 2
2 2 2
2 2 2

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

34 48 2 16 30
46 10 14 28 32
 8 12 26 40 44
20 24 38 42 6
22 36 50 4 18

s(2)

.n(1) .a 1a

.b

.c

.n(2)

1b

1c

2a

2b

2c

.a

.b

.c

.a

.b

.c

Access part of the array in field b of the second element in n within the first
element of s:

part_two_eye = s(1).n(2).b(1:2,1:2)

This returns the 2-by-2 upper left corner of 2 * eye(4):

part_two_eye =
2 0
0 2

7-13

7 Structures

Access Elements of a Nonscalar Struct Array
This example shows how to access and process data from multiple elements of
a nonscalar structure array:

Create a 1-by-3 structure s with field f:

s(1).f = 1;
s(2).f = 'two';
s(3).f = 3 * ones(3);

Although each structure in the array must have the same number of fields
and the same field names, the contents of the fields can be different types and
sizes. When you refer to field f for multiple elements of the structure array,
such as

s(1:3).f

or

s.f

MATLAB returns the data from the elements in a comma-separated list,
which displays as follows:

ans =
1

ans =
two

ans =
3 3 3
3 3 3
3 3 3

You cannot assign the list to a single variable with the syntax v = s.f
because the fields can contain different types of data. However, you can
assign the list items to the same number of variables, such as

[v1, v2, v3] = s.f;

7-14

Access Elements of a Nonscalar Struct Array

or assign to elements of a cell array, such as

c = {s.f};

If all of the fields contain the same type of data and can form a hyperrectangle,
you can concatenate the list items. For example, create a structure nums with
scalar numeric values in field f, and concatenate the data from the fields:

nums(1).f = 1;
nums(2).f = 2;
nums(3).f = 3;

allNums = [nums.f]

This code returns

allNums =
1 2 3

If you want to process each element of an array with the same operation, use
the arrayfun function. For example, count the number of elements in field
f of each struct in array s:

numElements = arrayfun(@(x) numel(x.f), s)

The syntax @(x) creates an anonymous function. This code calls the numel
function for each element of array s, such as numel(s(1).f), and returns

numElements =
1 3 9

For related information, see:

• “Comma-Separated Lists” on page 2-61

• “Anonymous Functions” on page 15-23

7-15

7 Structures

Ways to Organize Data in Structure Arrays
There are at least two ways you can organize data in a structure array: plane
organization and element-by-element organization. The method that best fits
your data depends on how you plan to access the data, and, for very large data
sets, whether you have system memory constraints.

Plane organization allows easier access to all values within a field.
Element-by-element organization allows easier access to all information
related to a single element or record. The following sections include an
example of each type of organization:

• “Plane Organization” on page 7-16

• “Element-by-Element Organization” on page 7-18

When you create a structure array, MATLAB stores information about each
element and field in the array header. As a result, structures with more
elements and fields require more memory than simpler structures that
contain the same data. For more information on memory requirements for
arrays, see “Memory Allocation” on page 24-2.

Plane Organization
Consider an RGB image with three arrays corresponding to color intensity
values.

7-16

Ways to Organize Data in Structure Arrays

If you have arrays RED, GREEN, and BLUE in your workspace, then these
commands create a scalar structure named img that uses plane organization:

img.red = RED;
img.green = GREEN;
img.blue = BLUE;

Plane organization allows you to easily extract entire image planes for
display, filtering, or other processing. For example, multiply the red intensity
values by 0.9:

adjustedRed = .9 * img.red;

If you have multiple images, you can add them to the img structure, so that
each element img(1),...,img(n) contains an entire image. For an example
that adds elements to a structure, see the following section.

7-17

7 Structures

Element-by-Element Organization
Consider a database with patient information. Each record contains data for
the patient’s name, test results, and billing amount.

These statements create an element in a structure array named patient:

patient(1).name = 'John Doe';
patient(1).billing = 127.00;
patient(1).test = [79, 75, 73; 180, 178, 177.5; 220, 210, 205];

Additional patients correspond to new elements in the structure. For example,
add an element for a second patient:

patient(2).name = 'Ann Lane';
patient(2).billing = 28.50;
patient(2).test = [68, 70, 68; 118, 118, 119; 172, 170, 169];

Element-by-element organization supports simple indexing to access data for
a particular patient. For example, find the average of the first patient’s test
results, calculating by rows (dimension 2) rather than by columns:

aveResultsDoe = mean(patient(1).test,2)

This code returns

aveResultsDoe =

7-18

Ways to Organize Data in Structure Arrays

75.6667
178.5000
212.0000

For information on processing data from more than one element at a time, see
“Access Data in a Structure Array” on page 7-6.

7-19

7 Structures

Memory Requirements for a Structure Array
Structure arrays do not require completely contiguous memory. However,
each field requires contiguous memory, as does the header that MATLAB
creates to describe the array. For very large arrays, incrementally increasing
the number of fields or the number of elements in a field results in Out of
Memory errors.

Allocate memory for the contents by assigning initial values with the struct
function, such as

newStruct(1:25,1:50) = struct('a',ones(20),'b',zeros(30),'c',rand(40));

This code creates and populates a 25-by-50 structure array S with fields a,
b, and c.

If you prefer not to assign initial values, you can initialize a structure array
by assigning empty arrays to each field of the last element in the structure
array, such as

newStruct(25,50).a = [];
newStruct(25,50).b = [];
newStruct(25,50).c = [];

or, equivalently,

newStruct(25,50) = struct('a',[],'b',[],'c',[]);

However, in this case, MATLAB only allocates memory for the header, and
not for the contents of the array.

For more information, see:

• “Preallocating Memory”

• “Memory Allocation” on page 24-2

7-20

8

Cell Arrays

• “What Is a Cell Array?” on page 8-2

• “Create a Cell Array” on page 8-3

• “Access Data in a Cell Array” on page 8-5

• “Add Cells to a Cell Array” on page 8-8

• “Delete Data from a Cell Array” on page 8-9

• “Combine Cell Arrays” on page 8-10

• “Pass Contents of Cell Arrays to Functions” on page 8-11

• “Preallocate Memory for a Cell Array” on page 8-14

• “Cell vs. Struct Arrays” on page 8-15

• “Multilevel Indexing to Access Parts of Cells” on page 8-17

8 Cell Arrays

What Is a Cell Array?
A cell array is a data type with indexed data containers called cells. Each
cell can contain any type of data. Cell arrays commonly contain lists of text
strings, combinations of text and numbers from spreadsheets or text files,
or numeric arrays of different sizes.

There are two ways to refer to the elements of a cell array. Enclose indices
in smooth parentheses, (), to refer to sets of cells — for example, to define a
subset of the array. Enclose indices in curly braces, {}, to refer to the text,
numbers, or other data within individual cells.

For more information, see:

• “Create a Cell Array” on page 8-3

• “Access Data in a Cell Array” on page 8-5

8-2

Create a Cell Array

Create a Cell Array
This example shows how to create a cell array using the {} operator or the
cell function.

When you have data to put into a cell array, create the array using the cell
array construction operator, {}:

myCell = {1, 2, 3;
'text', rand(5,10,2), {11; 22; 33}}

Like all MATLAB arrays, cell arrays are rectangular, with the same number
of cells in each row. myCell is a 2-by-3 cell array:

myCell =
[1] [2] [3]
'text' [5x10x2 double] {3x1 cell}

You also can use the {} operator to create an empty 0-by-0 cell array,

C = {}

If you plan to add values to a cell array over time or in a loop, you can create
an empty n-dimensional array using the cell function:

emptyCell = cell(3,4,2)

emptyCell is a 3-by-4-by-2 cell array, where each cell contains an empty
array, []:

emptyCell(:,:,1) =
[] [] [] []
[] [] [] []
[] [] [] []

emptyCell(:,:,2) =

[] [] [] []
[] [] [] []
[] [] [] []

For more information, see:

8-3

8 Cell Arrays

• “Access Data in a Cell Array” on page 8-5

• “Multidimensional Cell Arrays”

8-4

Access Data in a Cell Array

Access Data in a Cell Array
This example shows how to read and write data to and from a cell array. To
run the code in this example, create a 2-by-3 cell array of text and numeric
data:

C = {'one', 'two', 'three';
1, 2, 3};

There are two ways to refer to the elements of a cell array. Enclose indices
in smooth parentheses, (), to refer to sets of cells—for example, to define a
subset of the array. Enclose indices in curly braces, {}, to refer to the text,
numbers, or other data within individual cells.

Cell Indexing with Smooth Parentheses, ()

Cell array indices in smooth parentheses refer to sets of cells. For example,
the command

upperLeft = C(1:2,1:2)

creates a 2-by-2 cell array:

upperLeft =
'one' 'two'
[1] [2]

Update sets of cells by replacing them with the same number of cells. For
example, the statement

C(1,1:3) = {'first','second','third'}

replaces the cells in the first row of C with an equivalent-sized (1-by-3) cell
array:

C =
'first' 'second' 'third'
[1] [2] [3]

If cells in your array contain numeric data, you can convert the cells to a
numeric array using the cell2mat function:

8-5

8 Cell Arrays

numericCells = C(2,1:3)
numericVector = cell2mat(numericCells)

numericCells is a 1-by-3 cell array, but numericVector is a 1-by-3 array of
type double:

numericCells =
[1] [2] [3]

numericVector =
1 2 3

Content Indexing with Curly Braces, {}

Access the contents of cells—the numbers, text, or other data within the
cells—by indexing with curly braces. For example, the command

last = C{2,3}

creates a numeric variable of type double, because the cell contains a double
value:

last =
3

Similarly, this command

C{2,3} = 300

replaces the contents of the last cell of C with a new, numeric value:

C =
'first' 'second' 'third'
[1] [2] [300]

When you access the contents of multiple cells, such as

C{1:2,1:2}

MATLAB creates a comma-separated list. Because each cell can contain
a different type of data, you cannot assign this list to a single variable.
However, you can assign the list to the same number of variables as cells.
MATLAB assigns to the variables in column order. For example,

8-6

Access Data in a Cell Array

[r1c1, r2c1, r1c2, r2c2] = C{1:2,1:2}

returns

r1c1 =
first

r2c1 =
1

r1c2 =
second

r2c2 =
2

If each cell contains the same type of data, you can create a single variable
by applying the array concatenation operator, [], to the comma-separated
list. For example,

nums = [C{2,:}]

returns

nums =
1 2 300

For more information, see:

• “Multilevel Indexing to Access Parts of Cells” on page 8-17

• “Comma-Separated Lists” on page 2-61

8-7

8 Cell Arrays

Add Cells to a Cell Array
This example shows how to add cells to a cell array.

Create a 1-by-3 cell array:

C = {1, 2, 3};

Assign data to a cell outside the current dimensions:

C{4,4} = 44

MATLAB expands the cell array to a rectangle that includes the specified
subscripts. Any intervening cells contain empty arrays:

C =
[1] [2] [3] []
[] [] [] []
[] [] [] []
[] [] [] [44]

Add cells without specifying a value by assigning an empty array as the
contents of a cell:

C{5,5} = []

C is now a 5-by-5 cell array:

C =
[1] [2] [3] [] []
[] [] [] [] []
[] [] [] [] []
[] [] [] [44] []
[] [] [] [] []

For related examples, see:

• “Access Data in a Cell Array” on page 8-5

• “Combine Cell Arrays” on page 8-10

• “Delete Data from a Cell Array” on page 8-9

8-8

Delete Data from a Cell Array

Delete Data from a Cell Array
This example shows how to remove data from individual cells, and how to
delete entire cells from a cell array. To run the code in this example, create a
3-by-3 cell array:

C = {1, 2, 3; 4, 5, 6; 7, 8, 9};

Delete the contents of a particular cell by assigning an empty array to the
cell, using curly braces for content indexing, {}:

C{2,2} = []

This code returns

C =
[1] [2] [3]
[4] [] [6]
[7] [8] [9]

Delete sets of cells using standard array indexing with smooth parentheses,
(). For example, this command

C(2,:) = []

removes the second row of C:

C =
[1] [2] [3]
[7] [8] [9]

For related examples, see:

• “Add Cells to a Cell Array” on page 8-8

• “Access Data in a Cell Array” on page 8-5

8-9

8 Cell Arrays

Combine Cell Arrays
This example shows how to combine cell arrays by concatenation or nesting.
To run the code in this example, create several cell arrays with the same
number of columns:

C1 = {1, 2, 3};
C2 = {'A', 'B', 'C'};
C3 = {10, 20, 30};

Concatenate cell arrays with the array concatenation operator, []. In this
example, vertically concatenate the cell arrays by separating them with
semicolons:

C4 = [C1; C2; C3]

C4 is a 3-by-3 cell array:

C4 =
[1] [2] [3]
'A' 'B' 'C'
[10] [20] [30]

Create a nested cell array with the cell array construction operator, {}:

C5 = {C1; C2; C3}

C5 is a 3-by-1 cell array, where each cell contains a cell array:

C5 =
{1x3 cell}
{1x3 cell}
{1x3 cell}

For more information, see “Concatenating Matrices”.

8-10

Pass Contents of Cell Arrays to Functions

Pass Contents of Cell Arrays to Functions
These examples show several ways to pass data from a cell array to a
MATLAB function that does not recognize cell arrays as inputs.

• Pass the contents of a single cell by indexing with curly braces, {}. Access
part of an array within the cell by indexing further into the content
(multilevel indexing).

This example creates a cell array that contains text and a 20-by-2 array of
random numbers. Plot all of the data, and then plot only the first column
of data.

randCell = {'Random Data', rand(20,2)};
plot(randCell{1,2})
title(randCell{1,1})

figure
plot(randCell{1,2}(:,1))
title('First Column of Data')

• Combine numeric data from multiple cells using the cell2mat function.

This example creates a 5-by-2 cell array that stores temperature data for
three cities, and plots the temperatures for each city by date.

temperature(1,:) = {'01-Jan-2010', [45, 49, 0]};
temperature(2,:) = {'03-Apr-2010', [54, 68, 21]};
temperature(3,:) = {'20-Jun-2010', [72, 85, 53]};
temperature(4,:) = {'15-Sep-2010', [63, 81, 56]};
temperature(5,:) = {'31-Dec-2010', [38, 54, 18]};

allTemps = cell2mat(temperature(:,2));
dates = datenum(temperature(:,1), 'dd-mmm-yyyy');

plot(dates, allTemps)
datetick('x','mmm')

• Pass the contents of multiple cells as a comma-separated list to functions
that accept multiple inputs.

8-11

8 Cell Arrays

This example plots X against Y, and applies line styles from a 2-by-3 cell
array C.

X = -pi:pi/10:pi;
Y = tan(sin(X)) - sin(tan(X));

C(:,1) = {'LineWidth'; 2};
C(:,2) = {'MarkerEdgeColor'; 'k'};
C(:,3) = {'MarkerFaceColor'; 'g'};

plot(X, Y, '--rs', C{:})

For more information, see:

• “Access Data in a Cell Array” on page 8-5

• “Multilevel Indexing to Access Parts of Cells” on page 8-17

8-12

Pass Contents of Cell Arrays to Functions

• “Comma-Separated Lists” on page 2-61

8-13

8 Cell Arrays

Preallocate Memory for a Cell Array
This example shows how to initialize and allocate memory for a cell array.

Cell arrays do not require completely contiguous memory. However, each cell
requires contiguous memory, as does the cell array header that MATLAB
creates to describe the array. For very large arrays, incrementally increasing
the number of cells or the number of elements in a cell results in Out of
Memory errors.

Initialize a cell array by calling the cell function, or by assigning to the last
element. For example, these statements are equivalent:

C = cell(25,50);
C{25,50} = [];

MATLAB creates the header for a 25-by-50 cell array. However, MATLAB
does not allocate any memory for the contents of each cell.

For more information, see:

• “Preallocating Memory”

• “Memory Allocation” on page 24-2

8-14

Cell vs. Struct Arrays

Cell vs. Struct Arrays
This example compares cell and structure arrays, and shows how to store data
in each type of array. Both cell and structure arrays allow you to store data
of different types and sizes.

Structure Arrays

Structure arrays contain data in fields that you access by name.

For example, store patient records in a structure array.

patient(1).name = 'John Doe';
patient(1).billing = 127.00;
patient(1).test = [79, 75, 73; 180, 178, 177.5; 220, 210, 205];

patient(2).name = 'Ann Lane';
patient(2).billing = 28.50;
patient(2).test = [68, 70, 68; 118, 118, 119; 172, 170, 169];

Create a bar graph of the test results for each patient.

numPatients = numel(patient);
for p = 1:numPatients

figure
bar(patient(p).test)
title(patient(p).name)

end

Cell Arrays

Cell arrays contain data in cells that you access by numeric indexing.
Common applications of cell arrays include storing lists of text strings and
storing heterogeneous data from spreadsheets.

For example, store temperature data for three cities over time in a cell array.

temperature(1,:) = {'01-Jan-2010', [45, 49, 0]};
temperature(2,:) = {'03-Apr-2010', [54, 68, 21]};
temperature(3,:) = {'20-Jun-2010', [72, 85, 53]};
temperature(4,:) = {'15-Sep-2010', [63, 81, 56]};

8-15

8 Cell Arrays

temperature(5,:) = {'31-Dec-2010', [38, 54, 18]};

Plot the temperatures for each city by date.

allTemps = cell2mat(temperature(:,2));
dates = datenum(temperature(:,1), 'dd-mmm-yyyy');

plot(dates,allTemps)
datetick('x','mmm')

Other Container Arrays

Struct and cell arrays are the most commonly used containers for storing
heterogeneous data. If you have installed the Statistics Toolbox™, you can
also use dataset arrays. Alternatively, use map containers, or create your
own class.

See Also containers.Map |

Related
Examples

• “Access Data in a Cell Array” on page 8-5
• “Access Data in a Structure Array” on page 7-6

8-16

Multilevel Indexing to Access Parts of Cells

Multilevel Indexing to Access Parts of Cells
This example explains techniques for accessing data in arrays stored within
cells of cell arrays. To run the code in this example, create a sample cell array:

myNum = [1, 2, 3];
myCell = {'one', 'two'};
myStruct.Field1 = ones(3);
myStruct.Field2 = 5*ones(5);

C = {myNum, 100*myNum;
myCell, myStruct};

Access the complete contents of a particular cell using curly braces, {}. For
example,

C{1,2}

returns the numeric vector from that cell:

ans =
100 200 300

Access part of the contents of a cell by appending indices, using syntax that
matches the data type of the contents. For example:

• Enclose numeric indices in smooth parentheses. For example, C{1,1}
returns the 1-by-3 numeric vector, [1, 2, 3]. Access the second element
of that vector with the syntax

C{1,1}(1,2)

which returns

ans =
2

• Enclose cell array indices in curly braces. For example, C{2,1} returns the
cell array {'one', 'two'}. Access the contents of the second cell within
that cell array with the syntax

C{2,1}{1,2}

8-17

8 Cell Arrays

which returns

ans =
two

• Refer to fields of a struct array with dot notation, and index into the array
as described for numeric and cell arrays. For example, C{2,2} returns a
structure array, where Field2 contains a 5-by-5 numeric array of fives.
Access the element in the fifth row and first column of that field with the
syntax

C{2,2}.Field2(5,1)

which returns

ans =
5

You can nest any number of cell and structure arrays. For example, add
nested cells and structures to C.

C{2,1}{2,2} = {pi, eps};
C{2,2}.Field3 = struct('NestedField1', rand(3), ...

'NestedField2', magic(4), ...
'NestedField3', {{'text'; 'more text'}});

These assignment statements access parts of the new data:

copy_pi = C{2,1}{2,2}{1,1}

part_magic = C{2,2}.Field3.NestedField2(1:2,1:2)

nested_cell = C{2,2}.Field3.NestedField3{2,1}

MATLAB displays:

copy_pi =
3.1416

part_magic =
16 2
5 11

8-18

Multilevel Indexing to Access Parts of Cells

nested_cell =
more text

Related
Examples

• “Access Data in a Cell Array” on page 8-5

8-19

8 Cell Arrays

8-20

9

Function Handles

• “What Is a Function Handle?” on page 9-2

• “Creating a Function Handle” on page 9-3

• “Calling a Function Using Its Handle” on page 9-7

• “Preserving Data from the Workspace” on page 9-10

• “Applications of Function Handles” on page 9-13

• “Saving and Loading Function Handles” on page 9-19

• “Advanced Operations on Function Handles” on page 9-20

• “Functions That Operate on Function Handles” on page 9-27

9 Function Handles

What Is a Function Handle?
A function handle is a callable association to a MATLAB function. It contains
an association to that function that enables you to invoke the function
regardless of where you call it from. This means that, even if you are outside
the normal scope of a function, you can still call it if you use its handle.

With function handles, you can:

• Pass a function to another function

• Capture data values for later use by a function

• Call functions outside of their normal scope

• Save the handle in a MAT-file to be used in a later MATLAB session

See “Applications of Function Handles” on page 9-13 for an explanation
of each of these applications.

9-2

Creating a Function Handle

Creating a Function Handle

In this section...

“Maximum Length of a Function Name” on page 9-4

“The Role of Scope, Precedence, and Overloading When Creating a Function
Handle” on page 9-4

“Obtaining Permissions from Class Methods” on page 9-5

“Using Function Handles for Anonymous Functions” on page 9-6

“Arrays of Function Handles” on page 9-6

You construct a handle for a specific function by preceding the function name
with an @ sign. The syntax is:

h = @functionname

where h is the variable to which the returned function handle is assigned.

Use only the function name, with no path information, after the @ sign. If
there is more than one function with this name, MATLAB associates with
the handle the one function source it would dispatch to if you were actually
calling the function.

Create a handle h for a function plot that is on your MATLAB path:

h = @plot;

Once you create a handle for a function, you can invoke the function by
means of the handle instead of using the function name. Because the handle
contains the absolute path to its function, you can invoke the function from
any location that MATLAB is able to reach, as long as the program file for
the function still exists at this location. This means that functions in one file
can call functions that are not on the MATLAB path, local functions in a
separate file, or even functions that are private to another folder, and thus
not normally accessible to that caller.

9-3

9 Function Handles

Maximum Length of a Function Name
Function names used in handles are unique up to N characters, where N is
the number returned by the function namelengthmax. If the function name
exceeds that length, MATLAB truncates the latter part of the name.

For function handles created for Java constructors, the length of any
segment of the package name or class name must not exceed namelengthmax
characters. (The term segment refers to any portion of the name that lies
before, between, or after a dot. For example, java.lang.String has three
segments). The overall length of the string specifying the package and class
has no limit.

The Role of Scope, Precedence, and Overloading
When Creating a Function Handle
At the time you create a function handle, MATLAB must decide exactly which
function it is to associate the handle to. In doing so, MATLAB uses the same
rules used to determine which file to invoke when you make a function call.
To make this determination, MATLAB considers the following:

• Scope — The function named must be on the MATLAB path at the time
the handle is constructed.

• Precedence — MATLAB selects which function(s) to associate the
handle with, according to the function precedence rules described under
Determining Which Function Gets Called.

• Overloading — If additional files on the path overload the function for
any of the fundamental MATLAB classes, such as double or char, then
MATLAB associates the handle with these files, as well.

Program files that overload a function for classes other than the standard
MATLAB classes are not associated with the function handle at the time it
is constructed. Function handles do operate on these types of overloaded
functions, but MATLAB determines which implementation to call at the time
of evaluation in this case.

9-4

Creating a Function Handle

Obtaining Permissions from Class Methods
When creating a function handle inside a method of a class, the function
is resolved using the permissions of that method. When MATLAB invokes
the function handle, it does so using the permissions of the class. This gives
MATLAB the same access as the location where the function handle was
created, including access to private and protected methods accessible to that
class.

Example
This example defines two methods. One, updateObj, defines a listener
for an event called Update, and the other , callbackfcn, responds to this
event whenever it should occur. The latter function is a private function
and thus would not normally be within the scope of the notify function.
However, because @callbackfcn is actually a function handle, it retains the
permissions of the context that created the function handle:

classdef updateObj < handle
events

Update
end

methods
function obj = updateObj(varargin)

addlistener(obj, 'Update', @callbackfcn);
notify(obj, 'Update');

end
end

methods (Access = private)
function obj = callbackfcn(obj, varargin)

disp('Object Updated')
disp(obj);

end
end

end

To run this function, invoke updateObj at the MATLAB command line.

9-5

9 Function Handles

Using Function Handles for Anonymous Functions
Function handles also serve as the means of invoking anonymous functions.
An anonymous function is a one-line expression-based MATLAB function
that does not require a program file.

For example, the statement

sqr = @(x) x.^2;

creates an anonymous function that computes the square of its input
argument x. The @ operator makes sqr a function handle, giving you a means
of calling the function:

sqr(20)
ans =

400

Like nested functions, a handle to an anonymous function also stores all data
that will be needed to resolve the handle when calling the function. Shares
same issues as nested functions do.

See the documentation on “Anonymous Functions” on page 15-23 for more
information.

Arrays of Function Handles
To create an array of function handles, you must use a cell array:

trigFun = {@sin, @cos, @tan};

For example, to plot the cosine of the range -pi to pi at 0.01 intervals, use

plot(trigFun{2}(-pi:0.01:pi))

9-6

Calling a Function Using Its Handle

Calling a Function Using Its Handle

In this section...

“Calling Syntax” on page 9-7

“Calling a Function with Multiple Outputs” on page 9-8

“Returning a Handle for Use Outside of a Function File” on page 9-8

“Example — Using Function Handles in Optimization” on page 9-9

Function handles can give you access to functions you might not be able to
execute. For instance, with a handle you can call a function even if it is no
longer on your MATLAB path. You can also call a local function from outside
of the file that defines that function.

Calling Syntax
The syntax for calling a function using a function handle is the same as that
used when calling the function directly. For example, if you call function
myFun like this:

[out1, out2, ...] = myFun(in1, in2, ...);

then you would call it using a handle in the same way, but using the handle
name instead:

fHandle = @myFun;
[out1, out2, ...] = fHandle(in1, in2, ...);

There is one small difference. If the function being called takes no input
arguments, then you must call the function with empty parentheses placed
after the handle name. If you use only the handle name, MATLAB just
identifies the name of the function:

% This identifies the handle. % This invokes the function.

fHandle = @computer; fHandle = @computer;
fHandle fHandle()
ans = ans =

@computer PCWIN

9-7

9 Function Handles

Calling a Function with Multiple Outputs
The example below returns multiple values from a call to an anonymous
function. Create anonymous function f that locates the nonzero elements of
an array, and returns the row, column, and value of each element in variables
row, col, and val:

f = @(X)find(X);

Call the function on matrix m using the function handle f. Because the
function uses the MATLAB find function which returns up to three outputs,
you can specify from 0 to 3 outputs in the call:

m = [3 2 0; -5 0 7; 0 0 1]
m =

3 2 0
-5 0 7
0 0 1

[row col val] = f(m);

val
val =

3
-5
2
7
1

Returning a Handle for Use Outside of a Function File
As stated previously, you can use function handles to call a function that may
otherwise be hidden or out of scope. This example function getHandle returns
a function handle fHandle to a caller that is outside of the file:

function fHandle = getHandle
fHandle = @subFun;

function res = subFun(t1, t2, varargin);
...

9-8

Calling a Function Using Its Handle

Call getHandle to obtain a function handle with which to invoke the local
function. You can now call the local function as you would any function
that is in scope:

f1 = getHandle;
result = f1(startTime, endTime, procedure);

Example — Using Function Handles in Optimization
Function handles can be particularly useful in optimization work. If you have
the MathWorks Optimization Toolbox™ installed, click on any of the links
below to find information and examples on this topic:

• “Passing Extra Parameters” — Calling objective or constraint functions
that have parameters in addition to the independent variable.

• “Anonymous Function Objectives” — Use function handles in writing
simple objective functions.

• “Nonlinear Curve Fitting with lsqcurvefit” — An example using
lsqcurvefit, which takes two inputs for the objective.

9-9

9 Function Handles

Preserving Data from the Workspace

In this section...

“Preserving Data with Anonymous Functions” on page 9-10

“Preserving Data with Nested Functions” on page 9-11

Both anonymous functions and nested functions make use of variable data
that is stored outside the body of the function itself. For example, the
anonymous function shown here uses two variables: X and K. You pass the X
variable into the anonymous function whenever you invoke the function. The
value for K however is taken from the currently active workspace:

K = 200;
fAnon = @(X)K * X;

fAnon([2.54 1.43 0.68 1.90 1.02 2.13]);

What would happen if you tried to invoke this function after you cleared K
from the workspace? Or if you saved the anonymous function to a .mat file
and then loaded it into an entirely separate computing environment where
K is not defined?

The answer is that MATLAB stores any values needed by an anonymous (or
nested) function within the handle itself. It does this at the time you construct
the handle. This does not include values from the argument list as these
values get passed in whenever you call the function.

Preserving Data with Anonymous Functions
If you create an anonymous function at the MATLAB command window, that
function has access to the workspace of your current MATLAB session. If you
create the function inside of another function, then it has access to the outer
function’s workspace. Either way, if your anonymous function depends upon
variables from an outside workspace, then MATLAB stores the variables and
their values within the function handle at the time the handle is created.

This example puts a 3-by-5 matrix into the base workspace, and then creates a
function handle to an anonymous function that requires access to the matrix.

9-10

Preserving Data from the Workspace

Create matrix A and anonymous function testAnon:

A = magic(5); A(4:5,:) = []
A =

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

testAnon = @(x)x * A; % Anonymous function

Call the anonymous function via its handle, passing in a multiplier value.
This multiplies all elements by 5.2:

testAnon(5.2)
ans =

88.4000 124.8000 5.2000 41.6000 78.0000
119.6000 26.0000 36.4000 72.8000 83.2000
20.8000 31.2000 67.6000 104.0000 114.4000

Clear variable A from the base workspace and verify that this action has no
effect on the output of the anonymous function:

clear A

testAnon(5.2)
ans =

88.4000 124.8000 5.2000 41.6000 78.0000
119.6000 26.0000 36.4000 72.8000 83.2000
20.8000 31.2000 67.6000 104.0000 114.4000

This works because the variable A and its value at the time the anonymous
function is created is preserved within the function handle that also provides
access to the anonymous function. See “Variables in the Expression” on page
15-24 for more information.

Preserving Data with Nested Functions
Nested functions are similar to anonymous functions in their ability to
preserve workspace data needed by a function handle. In this case however,
the workspace belongs to one of the functions inside of which the handle is
being created. See “Sharing Variables Between Parent and Nested Functions”

9-11

9 Function Handles

on page 15-33 and “Using Handles to Store Function Parameters” on page
15-35 for more information on this subject.

This example shows a function getHandles that returns a handle to nested
function getApproxVal_V4. The nested function uses two variables, const
and adjust, from the workspace of the outer function. Calling getHandles
creates a function handle to the nested function and also stores these two
variables within that handle so that they will be available whenever the
nested function is invoked:

function handle = getHandles(adjust)
const = 16.3;
handle = @getApproxVal_V4;

function vOut = getApproxVal_V4(vectIn)
vOut = ((vectIn+adjust)*const) + ((vectIn-adjust)*const);
end

end

Call the getHandles function to obtain a handle to the nested function:

adjustVal = 0.023;
getApproxValue = getHandles(adjustVal);

getApproxValue([0.67 -0.09 1.01 0.33 -0.14 -0.23])
ans =

21.8420 -2.9340 32.9260 10.7580 -4.5640 -7.4980

The documentation on “Examining a Function Handle” on page 9-20 explains
how to see which variables are stored within a particular function handle.
Another helpful resource is “Using Handles to Store Function Parameters” on
page 15-35.

Loading a Saved Handle to a Nested Function
If you save a function handle to a nested function and, at some later date,
modify the function and then reload the handle, you may observe unexpected
behavior from the restored handle. when you invoke the function from the
reloaded handle.

9-12

Applications of Function Handles

Applications of Function Handles

In this section...

“Example of Passing a Function Handle” on page 9-13

“Pass a Function to Another Function” on page 9-13

“Capture Data Values For Later Use By a Function” on page 9-15

“Call Functions Outside of Their Normal Scope” on page 9-18

“Save the Handle in a MAT-File for Use in a Later MATLAB Session” on
page 9-18

Example of Passing a Function Handle
The following example creates a handle for a function supplied by MATLAB
called humps and assigns it to the variable h. (The humps function returns a
strong maxima near x = 0.3 and x = 0.9).

h = @humps;

After constructing the handle, you can pass it in the argument list of a call
to some other function, as shown here. This example passes the function
handle h that was just created as the first argument in a call to fminbnd. This
function then minimizes over the interval [0.3, 1].

x = fminbnd(h, 0.3, 1)
x =

0.6370

Using a function handle enables you to pass different functions for fminbnd to
use in determining its final result.

Pass a Function to Another Function
The ability to pass variables to a function enables you to run the function on
different values. In the same way, you can pass function handles as input
arguments to a function, thus allowing the called function to change the
operations it runs on the input data.

9-13

9 Function Handles

Example 1 — Run integral on Varying Functions
Run the integral function on varying input functions:

a = 0; b = 5;

integral(@log, a, b)
ans =

3.0472

integral(@sin, a, b)
ans =

0.7163

integral(@humps, a, b)
ans =

12.3566

Example 2 — Run integral on Anonymous Functions
Run integral on a MATLAB built-in function or an anonymous function:

n = integral(@log, 0, 3);

n = integral(@(x)x.^2, 0, 3);

Change the parameters of the function you pass to integral with a simple
modification of the anonymous function that is associated with the function
handle input:

a = 3.7;
z = integral(@(x)x.^a, 0, 3);

Example 3 — Compare integral Results on Different Functions
Compare the integral of the cosine function over the interval [a, b]:

a = 0; b = 10;
int1 = integral(@cos,a,b)

int1 =

9-14

Applications of Function Handles

-0.5440

with the integral over the same interval of the piecewise polynomial pp that
approximates the cosine function by interpolating the computed values x
and y:

x = a:b;
y = cos(x);
pp = spline(x,y);
int2 = integral(@(x)ppval(pp,x), a, b)

int2 =
-0.5485

Capture Data Values For Later Use By a Function
You can do more with a function handle than just create an association to a
certain function. By using anonymous functions, you can also capture certain
variables and their values from the function workspace and store them in
the handle. These data values are stored in the handle at the time of its
construction, and are contained within the handle for as long as it exists.
Whenever you then invoke the function by means of its handle, MATLAB
supplies the function with all variable inputs specified in the argument list
of the function call, and also any constant inputs that were stored in the
function handle at the time of its construction.

Storing some or all input data in a function handle enables you to reliably
use the same set of data with that function regardless of where or when you
invoke the handle. You can also interrupt your use of a function and resume
it with the same data at a later time simply by saving the function handle to
a MAT-file.

Example 1 — Constructing a Function Handle that Preserves
Its Variables
Compare the following two ways of implementing a simple plotting function
called draw_plot. The first case creates the function as one that you would
call by name and that accepts seven inputs specifying coordinate and property
information:

function draw_plot(x, y, lnSpec, lnWidth, mkEdge, mkFace, mkSize)

9-15

9 Function Handles

plot(x, y, lnSpec, ...

'LineWidth', lnWidth, ...

'MarkerEdgeColor', mkEdge, ...

'MarkerFaceColor', mkFace, ...

'MarkerSize', mkSize)

The second case implements draw_plot as an anonymous function to be
called by a function handle, h. The draw_plot function has only two inputs
now; the remaining five are specified only on a call to the handle constructor
function, get_plot_handle:

function h = get_plot_handle(lnSpec, lnWidth, mkEdge, ...
mkFace, mkSize)

h = @draw_plot;
function draw_plot(x, y)

plot(x, y, lnSpec, ...
'LineWidth', lnWidth, ...
'MarkerEdgeColor', mkEdge, ...
'MarkerFaceColor', mkFace, ...
'MarkerSize', mkSize)

end
end

Because these input values are required by the draw_plot function but are not
made available in its argument list, MATLAB supplies them by storing them
in the function handle for draw_plot at the time it is constructed. Construct
the function handle h, also supplying the values to be stored in handle:

h = get_plot_handle('--rs', 2, 'k', 'g', 10);

Now call the function, specifying only the x and y inputs:

x = -pi:pi/10:pi;
y = tan(sin(x)) - sin(tan(x));
h(x, y) % Draw the plot

The later section on “Examining a Function Handle” on page 9-20 continues
this example by showing how you can examine the contents of the function
and workspace contents of this function handle.

9-16

Applications of Function Handles

Example 2 — Varying Data Values Stored in a Function Handle
Values stored within a handle to a nested function do not have to remain
constant. The following function constructs and returns a function handle h to
the anonymous function addOne. In addition to associating the handle with
addOne, MATLAB also stores the initial value of x in the function handle:

function h = counter
x = 0;
h = @addOne;

function y = addOne;
x = x + 1;
y = x;
end

end

The addOne function that is associated with handle h increments variable x
each time you call it. This modifies the value of the variable stored in the
function handle:

h = counter;
h()
ans =

1
h()
ans =

2

Example 3 — You Cannot Vary Data in a Handle to an
Anonymous Function
Unlike the example above, values stored within a handle to an anonymous
function do remain constant. Construct a handle to an anonymous function
that just returns the value of x, and initialize x to 300. The value of x within
the function handle remains constant regardless of how you modify x external
to the handle:

x = 300;
h = @()x;

x = 50;
h()

9-17

9 Function Handles

ans =
300

clear x
h()
ans =

300

Call Functions Outside of Their Normal Scope
By design, only functions within a program file are permitted to access local
functions defined within that file. However, if, in this same file, you were to
construct a function handle for one of the internal local functions, and then
pass that handle to a variable that exists outside of the file, access to that
local function would be essentially unlimited. By capturing the access to the
local function in a function handle, and then making that handle available to
functions external to the file (or to the command line), the example extends
that scope. An example of this is shown in the preceding section, “Capture
Data Values For Later Use By a Function” on page 9-15.

Private functions also have specific access rules that limit their availability
with the MATLAB environment. But, as with local functions, MATLAB
allows you to construct a handle for a private function. Therefore, you can
call it by means of that handle from any location or even from the MATLAB
command line, should it be necessary.

Save the Handle in a MAT-File for Use in a Later
MATLAB Session
If you have one or more function handles that you would like to reuse in a later
MATLAB session, you can store them in a MAT-file using the save function
and then use load later on to restore them to your MATLAB workspace.

9-18

Saving and Loading Function Handles

Saving and Loading Function Handles
You can save and load function handles in a MAT-file using the MATLAB save
and load functions. If you load a function handle that you saved in an earlier
MATLAB session, the following conditions could cause unexpected behavior:

• Any of the files that define the function have been moved, and thus no
longer exist on the path stored in the handle.

• You load the function handle into an environment different from that in
which it was saved. For example, the source for the function either does
not exist or is located in a different folder than on the system on which
the handle was saved.

In both of these cases, the function handle is now invalid because it is no
longer associated with any existing function code. Although the handle is
invalid, MATLAB still performs the load successfully and without displaying
a warning. Attempting to invoke the handle, however, results in an error.

Invalid or Obsolete Function Handles
If you create a handle to a function that is not on the MATLAB path, or if you
load a handle to a function that is no longer on the path, MATLAB catches
the error only when the handle is invoked. You can assign an invalid handle
and use it in such operations as func2str. MATLAB catches and reports an
error only when you attempt to use it in a runtime operation.

9-19

9 Function Handles

Advanced Operations on Function Handles

In this section...

“Examining a Function Handle” on page 9-20

“Converting to and from a String” on page 9-21

“Comparing Function Handles” on page 9-23

Examining a Function Handle
Use the functions function to examine the contents of a function handle.

Caution MATLAB provides the functions function for querying and
debugging purposes only. Because its behavior may change in subsequent
releases, you should not rely upon it for programming purposes.

The following example is a continuation of an example in an earlier section of
the Function Handles documentation. See Example 1 in the section “Capture
Data Values For Later Use By a Function” on page 9-15 for the complete
example.

Construct a function handle that contains both a function association, and
data required by that function to execute. The following function constructs
the function handle, h:

function h = get_plot_handle(lnSpec, lnWidth, mkEdge, ...
mkFace, mkSize)

h = @draw_plot;
function draw_plot(x, y)

plot(x, y, lnSpec, ...
'LineWidth', lnWidth, ...
'MarkerEdgeColor', mkEdge, ...
'MarkerFaceColor', mkFace, ...
'MarkerSize', mkSize)

end
end

9-20

Advanced Operations on Function Handles

Use functions to examine the contents of the returned handle:

f = functions(h)
f =

function: 'get_plot_handle/draw_plot'
type: 'nested'
file: 'D:\matlab\work\get_plot_handle.m'

workspace: {[1x1 struct]}

The call to functions returns a structure with four fields:

• function — Name of the function or local function to which the handle
is associated. (Function names that follow a slash character (/) are
implemented in the program code as local functions.)

• type— Type of function (e.g., simple, nested, anonymous)

• file — Filename and path to the file. (For built-in functions, this is the
string 'MATLAB built-in function')

• workspace— Variables in the function workspace at the time the handle
was constructed, along with their values

Examine the workspace variables that you saved in the function handle:

f.workspace{:}
ans =

h: @get_plot_handle/draw_plot
lnSpec: '--rs'

lnWidth: 2
mrkrEdge: 'k'
mrkrFace: 'g'
mrkrSize: 10

Converting to and from a String
Two functions, str2func and func2str enable you to convert between a
string containing a function name and a function handle that is associated
with that function name.

9-21

9 Function Handles

Converting a String to a Function Handle
Another means of creating a function handle is to convert a string that holds
a function name to a handle for the named function. You can do this using
the str2func function:

handle = str2func('functionname');

The example below takes the name of a function as the first argument. It
compares part of the name to see if this is a polynomial function, converts the
function string to a function handle if it is not, and then calls the function by
means of its handle:

function run_function(funcname, arg1, arg2)
if strncmp(funcname, 'poly', 4)

disp 'You cannot run polynomial functions on this data.'
return

else
h = str2func(funcname);
h(arg1, arg2);

end

Note Nested functions are not accessible to str2func. To construct a
function handle for a nested function, you must use the function handle
constructor, @.

Converting a Function Handle to a String
You can also convert a function handle back into a string using the func2str
function:

functionname = func2str(handle);

This example converts the function handle h to a string containing the function
name, and then uses the function name in a message displayed to the user:

function call_h(h, arg1, arg2)
sprintf('Calling function %s ...\n', func2str(h))
h(arg1, arg2)

9-22

Advanced Operations on Function Handles

Comparing Function Handles
This section describes how MATLAB determines whether or not separate
function handles are equal to each other:

• “Comparing Handles Constructed from a Named Function” on page 9-23

• “Comparing Handles to Anonymous Functions” on page 9-23

• “Comparing Handles to Nested Functions” on page 9-24

• “Comparing Handles Saved to a MAT-File” on page 9-25

Comparing Handles Constructed from a Named Function
MATLAB considers function handles that you construct from the same named
function (e.g., handle = @sin) to be equal. The isequal function returns a
value of true when comparing these types of handles:

func1 = @sin;
func2 = @sin;
isequal(func1, func2)
ans =

1

If you save these handles to a MAT-file, and then load them back into the
workspace later on, they are still equal.

Comparing Handles to Anonymous Functions
Unlike handles to named functions, any two function handles that represent
the same anonymous function (i.e., handles to anonymous functions that
contain the same text) are not equal. This is because MATLAB cannot
guarantee that the frozen values of non-argument variables (such as A, below)
are the same.

A = 5;
h1 = @(x)A * x.^2;
h2 = @(x)A * x.^2;

isequal(h1, h2)
ans =

0

9-23

9 Function Handles

Note In general, MATLAB may underestimate the equality of function
handles. That is, a test for equality may return false even when the functions
happen to behave the same. But in cases where MATLAB does indicate
equality, the functions are guaranteed to behave in an identical manner.

If you make a copy of an anonymous function handle, the copy and the
original are equal:

h1 = @(x)A * x.^2; h2 = h1;
isequal(h1, h2)
ans =

1

Comparing Handles to Nested Functions
MATLAB considers function handles to the same nested function to be equal
only if your code constructs these handles on the same call to the function
containing the nested functions. Given this function that constructs two
handles to the same nested function:

function [h1, h2] = test_eq(a, b, c)
h1 = @findZ;
h2 = @findZ;

function z = findZ
z = a.^3 + b.^2 + c';
end

end

function handles constructed from the same nested function and on the same
call to the parent function are considered equal:

[h1 h2] = test_eq(4, 19, -7);

isequal(h1, h2),
ans =

1

while those constructed from different calls are not considered equal:

9-24

Advanced Operations on Function Handles

[q1 q2] = test_eq(3, -1, 2);

isequal(h1, q1)
ans =

0

Comparing Handles Saved to a MAT-File
If you save equivalent anonymous or nested function handles to separate
MAT-files, and then load them back into the MATLAB workspace, they are
no longer equal. This is because saving the function handle loses track of
the original circumstances under which the function handle was created.
Reloading it results in a function handle that compares as being unequal to
the original function handle.

Create two equivalent anonymous function handles:

h1 = @(x) sin(x);
h2 = h1;

isequal(h1, h2)
ans =

1

Save each to a different MAT-file:

save fname1 h1;
save fname2 h2;

Clear the MATLAB workspace, and then load the function handles back into
the workspace:

clear all
load fname1
load fname2

The function handles are no longer considered equal:

isequal(h1, h2)
ans =

9-25

9 Function Handles

0

Note, however, that equal anonymous and nested function handles that you
save to the same MAT-file are equal when loaded back into MATLAB.

9-26

Functions That Operate on Function Handles

Functions That Operate on Function Handles
MATLAB provides the following functions for working with function handles.
See the reference pages for these functions for more information.

Function Description

functions Return information describing a function handle.

func2str Construct a function name string from a function
handle.

str2func Construct a function handle from a function name
string.

save Save a function handle from the current workspace to
a MAT-file.

load Load a function handle from a MAT-file into the current
workspace.

isa Determine if a variable contains a function handle.

isequal Determine if two function handles are handles to the
same function.

9-27

9 Function Handles

9-28

10

Map Containers

• “Overview of the Map Data Structure” on page 10-2

• “Description of the Map Class” on page 10-4

• “Creating a Map Object” on page 10-6

• “Examining the Contents of the Map” on page 10-9

• “Reading and Writing Using a Key Index” on page 10-11

• “Modifying Keys and Values in the Map” on page 10-15

• “Mapping to Different Value Types” on page 10-18

10 Map Containers

Overview of the Map Data Structure
A Map is a type of fast key lookup data structure that offers a flexible means
of indexing into its individual elements. Unlike most array data structures
in the MATLAB software that only allow access to the elements by means of
integer indices, the indices for a Map can be nearly any scalar numeric value
or a character string.

Indices into the elements of a Map are called keys. These keys, along with the
data values associated with them, are stored within the Map. Each entry of a
Map contains exactly one unique key and its corresponding value. Indexing
into the Map of rainfall statistics shown below with a string representing the
month of August yields the value internally associated with that month, 37.3.

 327.2
 368.2
 197.6
 178.4
 100.0
 69.9
 32.3
 37.3
 19.0
 37.0
 73.2
 110.9
1551.0

Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual

KEYS VALUES

Aug 37.3

Mean monthly rainfall statistics (mm)

Keys are not restricted to integers as they are with other arrays. Specifically,
a key may be any of the following types:

• 1-by-N character array

• Scalar real double or single

10-2

Overview of the Map Data Structure

• Signed or unsigned scalar integer

The values stored in a Map can be of any type. This includes arrays of
numeric values, structures, cells, strings, objects, or other Maps.

Note A Map is most memory efficient when the data stored in it is a scalar
number or a character array.

10-3

10 Map Containers

Description of the Map Class

In this section...

“Properties of the Map Class” on page 10-4

“Methods of the Map Class” on page 10-5

A Map is actually an object, or instance, of a MATLAB class called Map. It is
also a handle object and, as such, it behaves like any other MATLAB handle
object. This section gives a brief overview of the Map class. For more details,
see the containers.Map reference page.

Properties of the Map Class
All objects of the Map class have three properties. You cannot write directly to
any of these properties; you can change them only by means of the methods
of the Map class.

Property Description Default

Count Unsigned 64-bit integer that represents the total
number of key/value pairs contained in the Map
object.

0

KeyType String that indicates the type of all keys contained
in the Map object. KeyType can be any of the
following: double, single, char, and signed or
unsigned 32-bit or 64-bit integer. If you attempt to
add keys of an unsupported type, int8 for example,
MATLAB makes them double.

char

ValueType String that indicates the type of values contained
in the Map object. If the values in a Map are all
scalar numbers of the same type, ValueType is set
to that type. If the values are all character arrays,
ValueType is 'char'. Otherwise, ValueType is
'any'.

any

10-4

Description of the Map Class

To examine one of these properties, follow the name of the Map object with
a dot and then the property name. For example, to see what type of keys
are used in Map mapObj, use

mapObj.KeyType

A Map is a handle object. As such, if you make a copy of the object, MATLAB
does not create a new Map; it creates a new handle for the existing Map that
you specify. If you alter the Map’s contents in reference to this new handle,
MATLAB applies the changes you make to the original Map as well. You can,
however, delete the new handle without affecting the original Map.

Methods of the Map Class
The Map class implements the following methods. Their use is explained in the
later sections of this documentation and also in the function reference pages.

Method Description

isKey Check if Map contains specified key

keys Names of all keys in Map

length Length of Map

remove Remove key and its value from Map

size Dimensions of Map

values Values contained in Map

10-5

10 Map Containers

Creating a Map Object

In this section...

“Constructing an Empty Map Object” on page 10-6

“Constructing An Initialized Map Object” on page 10-7

“Combining Map Objects” on page 10-8

A Map is an object of the Map class. It is defined within a MATLAB package
called containers. As with any class, you use its constructor function to
create any new instances of it. You must include the package name when
calling the constructor:

newMap = containers.Map(optional_keys_and_values)

Constructing an Empty Map Object
When you call the Map constructor with no input arguments, MATLAB
constructs an empty Map object. When you do not end the command with a
semicolon, MATLAB displays the following information about the object you
have constructed:

newMap = containers.Map()
newMap =

containers.Map handle
Package: containers

Properties:
Count: 0

KeyType: 'char'
ValueType: 'any'

Methods, Events, Superclasses

The properties of an empty Map object are set to their default values:

• Count = 0

• KeyType = 'char'

• ValueType = 'any'

10-6

Creating a Map Object

Once you construct the empty Map object, you can use the keys and values
methods to populate it. For a summary of MATLAB functions you can use
with a Map object, see “Methods of the Map Class” on page 10-5

Constructing An Initialized Map Object
Most of the time, you will want to initialize the Map with at least some keys
and values at the time you construct it. You can enter one or more sets of
keys and values using the syntax shown here. The brace operators ({}) are
not required if you enter only one key/value pair:

mapObj = containers.Map({key1, key2, ...}, {val1, val2, ...});

For those keys and values that are character strings, be sure that you
specify them enclosed within single quotation marks. For example, when
constructing a Map that has character string keys, use

mapObj = containers.Map(...
{'keystr1', 'keystr2', ...}, {val1, val2, ...});

As an example of constructing an initialized Map object, create a new Map for
the following key/value pairs taken from the monthly rainfall map shown
earlier in this section.

 327.2
 368.2
 197.6
 178.4
 100.0
 69.9
 32.3
 37.3
 19.0
 37.0
 73.2
 110.9
1551.0

Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual

KEYS VALUES

10-7

10 Map Containers

k = {'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', ...
'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec', 'Annual'};

v = {327.2, 368.2, 197.6, 178.4, 100.0, 69.9, ...
32.3, 37.3, 19.0, 37.0, 73.2, 110.9, 1551.0};

rainfallMap = containers.Map(k, v)
rainfallMap =

containers.Map handle
Package: containers

Properties:
Count: 13

KeyType: 'char'
ValueType: 'double'

Methods, Events, Superclasses

The Count property is now set to the number of key/value pairs in the Map,
13, the KeyType is char, and the ValueType is double.

Combining Map Objects
You can combine Map objects vertically using concatenation. However, the
result is not a vector of Maps, but rather a single Map object containing all
key/value pairs of the contributing Maps. Horizontal vectors of Maps are not
allowed. See “Building a Map with Concatenation” on page 10-13, below.

10-8

Examining the Contents of the Map

Examining the Contents of the Map
Each entry in a Map consists of two parts: a unique key and its corresponding
value. To find all the keys in a Map, use the keys method. To find all of
the values, use the values method.

Create a new Map called tickets that maps airline ticket numbers to the
holders of those tickets. Construct the Map with four key/value pairs:

ticketMap = containers.Map(...
{'2R175', 'B7398', 'A479GY', 'NZ1452'}, ...
{'James Enright', 'Carl Haynes', 'Sarah Latham', ...
'Bradley Reid'});

Use the keys method to display all keys in the Map. MATLAB lists keys of
type char in alphabetical order, and keys of any numeric type in numerical
order:

keys(ticketMap)
ans =

'2R175' 'A479GY' 'B7398' 'NZ1452'

Next, display the values that are associated with those keys in the Map. The
order of the values is determined by the order of the keys associated with
them.

This table shows the keys listed in alphabetical order:

keys values

2R175 James Enright

A479GY Sarah Latham

B7398 Carl Haynes

NZ1452 Bradley Reid

The values method uses the same ordering of values:

values(ticketMap)
ans =

10-9

10 Map Containers

'James Enright' 'Sarah Latham' 'Carl Haynes' 'Bradley Reid'

10-10

Reading and Writing Using a Key Index

Reading and Writing Using a Key Index

In this section...

“Reading From the Map” on page 10-11

“Adding Key/Value Pairs” on page 10-12

“Building a Map with Concatenation” on page 10-13

When reading from the Map, use the same keys that you have defined and
associated with particular values. Writing new entries to the Map requires
that you supply the values to store with a key for each one .

Note For a large Map, the keys and value methods use a lot of memory as
their outputs are cell arrays.

Reading From the Map
After you have constructed and populated your Map, you can begin to use it to
store and retrieve data. You use a Map in the same manner that you would an
array, except that you are not restricted to using integer indices. The general
syntax for looking up a value (valueN) for a given key (keyN) is shown here. If
the key is a character string, enclose it in single quotation marks:

valueN = mapObj(keyN);

You can find any single value by indexing into the map with the appropriate
key:

passenger = ticketMap('2R175')
passenger =

James Enright

Find the person who holds ticket A479GY:

sprintf(' Would passenger %s please come to the desk?\n', ...
ticketMap('A479GY'))

ans =
Would passenger Sarah Latham please come to the desk?

10-11

10 Map Containers

To access the values of multiple keys, use the values method, specifying
the keys in a cell array:

values(ticketMap, {'2R175', 'B7398'})
ans =

'James Enright' 'Carl Haynes'

Map containers support scalar indexing only. You cannot use the colon
operator to access a range of keys as you can with other MATLAB classes. For
example, the following statements throw an error:

ticketMap('2R175':'B7398')
ticketMap(:)

Adding Key/Value Pairs
Unlike other array types, each entry in a Map consists of two items: the value
and its key. When you write a new value to a Map, you must supply its key as
well. This key must be consistent in type with any other keys in the Map.

Use the following syntax to insert additional elements into a Map:

existingMapObj(newKeyName) = newValue;

Add two more entries to the ticketMap used in the above examples, Verify
that the Map now has five key/value pairs:

ticketMap('947F4') = 'Susan Spera';
ticketMap('417R93') = 'Patricia Hughes';

ticketMap.Count
ans =

6

List all of the keys and values in Map ticketMap:

keys(ticketMap), values(ticketMap)
ans =

'2R175' '417R93' '947F4' 'A479GY' 'B7398' 'NZ1452'
ans =

Columns 1 through 3

10-12

Reading and Writing Using a Key Index

'James Enright' 'Patricia Hughes' 'Susan Spera'
Columns 4 through 6

'Sarah Latham' 'Carl Haynes' 'Bradley Reid'

Building a Map with Concatenation
You can add key/value pairs to a Map in groups using concatenation. The
concatenation of Map objects is different from other classes. Instead of
building a vector of s, MATLAB returns a single Map containing the key/value
pairs from each of the contributing Map objects.

Rules for the concatenation of Map objects are:

• Only vertical vectors of Map objects are allowed. You cannot create an
m-by-n array or a horizontal vector of s. For this reason, vertcat is
supported for Map objects, but not horzcat.

• All keys in each map being concatenated must be of the same class.

• You can combine Maps with different numbers of key/value pairs. The
result is a single Map object containing key/value pairs from each of the
contributing maps:

tMap1 = containers.Map({'2R175', 'B7398', 'A479GY'}, ...
{'James Enright', 'Carl Haynes', 'Sarah Latham'});

tMap2 = containers.Map({'417R93', 'NZ1452', '947F4'}, ...
{'Patricia Hughes', 'Bradley Reid', 'Susan Spera'});

% Concatenate the two maps:
ticketMap = [tMap1; tMap2];

The result of this concatenation is the same 6-element map that was
constructed in the previous section:

ticketMap.Count
ans =

6

keys(ticketMap), values(ticketMap)
ans =

'2R175' '417R93' '947F4' 'A479GY' 'B7398' 'NZ1452'

10-13

10 Map Containers

ans =
Columns 1 through 3

'James Enright' 'Patricia Hughes' 'Susan Spera'
Columns 4 through 6

'Sarah Latham' 'Carl Haynes' 'Bradley Reid'

• Concatenation does not include duplicate keys or their values in the
resulting Map object.

In the following example, both objects m1 and m2 use a key of 8. In Map m1,
8 is a key to value C; in m2, it is a key to value X:

m1 = containers.Map({1, 5, 8}, {'A', 'B', 'C'});
m2 = containers.Map({8, 9, 6}, {'X', 'Y', 'Z'});

Combine m1 and m2 to form a new Map object, m:

m = [m1; m2];

The resulting Map object m has only five key/value pairs. The value C was
dropped from the concatenation because its key was not unique:

keys(m), values(m)
ans =

[1] [5] [6] [8] [9]
ans =

'A' 'B' 'Z' 'X' 'Y'

10-14

Modifying Keys and Values in the Map

Modifying Keys and Values in the Map

In this section...

“Removing Keys and Values from the Map” on page 10-15

“Modifying Values” on page 10-15

“Modifying Keys” on page 10-16

“Modifying a Copy of the Map” on page 10-16

Note Keep in mind that if you have more than one handle to a Map,
modifying the handle also makes changes to the original Map. See “Modifying
a Copy of the Map” on page 10-16, below.

Removing Keys and Values from the Map
Use the remove method to delete any entries from a Map. When calling this
method, specify the Map object name and the key name to remove. MATLAB
deletes the key and its associated value from the Map.

The syntax for the remove method is

remove(mapName, 'keyname');

Remove one entry (the specified key and its value) from the Map object:

remove(ticketMap, 'NZ1452');
values(ticketMap)
ans =

Columns 1 through 3
'James Enright' 'Patricia Hughes' 'Susan Spera'

Columns 4 through 5
'Sarah Latham' 'Carl Haynes'

Modifying Values
You can modify any value in a Map simply by overwriting the current value.
The passenger holding ticket A479GY is identified as Sarah Latham:

10-15

10 Map Containers

ticketMap('A479GY')
ans =

Sarah Latham

Change the passenger’s first name to Anna Latham by overwriting the original
value for the A479GY key:

ticketMap('A479GY') = 'Anna Latham';

Verify the change:

ticketMap('A479GY')
ans =

'Anna Latham';

Modifying Keys
To modify an existing key while keeping the value the same, first remove
both the key and its value from the Map. Then create a new entry, this time
with the corrected key name.

Modify the ticket number belonging to passenger James Enright:

remove(ticketMap, '2R175');
ticketMap('2S185') = 'James Enright';

k = keys(ticketMap); v = values(ticketMap);
str1 = ' ''%s'' has been assigned a new\n';
str2 = ' ticket number: %s.\n';

fprintf(str1, v{1})
fprintf(str2, k{1})

'James Enright' has been assigned a new
ticket number: 2S185.

Modifying a Copy of the Map
Because ticketMap is a handle object, you need to be careful when making
copies of the Map. Keep in mind that by copying a Map object, you are really

10-16

Modifying Keys and Values in the Map

just creating another handle to the same object. Any changes you make to
this handle are also applied to the original Map.

Make a copy of Map ticketMap. Write to this copy, and notice that the change
is applied to the original Map object itself:

copiedMap = ticketMap;

copiedMap('AZ12345') = 'unidentified person';
ticketMap('AZ12345')
ans =

unidentified person

Clean up:

remove(ticketMap, 'AZ12345');
clear copiedMap;

10-17

10 Map Containers

Mapping to Different Value Types

In this section...

“Mapping to a Structure Array” on page 10-18

“Mapping to a Cell Array” on page 10-19

It is fairly common to store other classes, such as structures or cell arrays, in
a Map structure. However, Maps are most memory efficient when the data
stored in them belongs to one of the basic MATLAB types such as double,
char, integers, and logicals.

Mapping to a Structure Array
The following example maps airline seat numbers to structures that contain
information on who occupies the seat. To start out, create the following
structure array:

s1.ticketNum = '2S185'; s1.destination = 'Barbados';
s1.reserved = '06-May-2008'; s1.origin = 'La Guardia';
s2.ticketNum = '947F4'; s2.destination = 'St. John';
s2.reserved = '14-Apr-2008'; s2.origin = 'Oakland';
s3.ticketNum = 'A479GY'; s3.destination = 'St. Lucia';
s3.reserved = '28-Mar-2008'; s3.origin = 'JFK';
s4.ticketNum = 'B7398'; s4.destination = 'Granada';
s4.reserved = '30-Apr-2008'; s4.origin = 'JFK';
s5.ticketNum = 'NZ1452'; s5.destination = 'Aruba';
s5.reserved = '01-May-2008'; s5.origin = 'Denver';

Map five of the seats to one of these structures:

seatingMap = containers.Map(...
{'23F', '15C', '15B', '09C', '12D'}, ...
{s5, s1, s3, s4, s2});

Using this Map object, find information about the passenger, who has
reserved seat 09C:

seatingMap('09C')
ans =

10-18

Mapping to Different Value Types

ticketNum: 'B7398'
destination: 'Granada'

reserved: '30-Apr-2008'
origin: 'JFK'

seatingMap('15B').ticketNum
ans =

A479GY

Using two Maps together, you can find out the name of the person who has
reserved the seat:

passenger = ticketMap(seatingMap('15B').ticketNum)
passenger =

Anna Latham

Mapping to a Cell Array
As with structures, you can also map to a cell array in a Map object.
Continuing with the airline example of the previous sections, some of the
passengers on the flight have “frequent flyer” accounts with the airline. Map
the names of these passengers to records of the number of miles they have
used and the number of miles they still have available:

accountMap = containers.Map(...
{'Susan Spera','Carl Haynes','Anna Latham'}, ...
{{247.5, 56.1}, {0, 1342.9}, {24.6, 314.7}});

Use the Map to retrieve account information on the passengers:

name = 'Carl Haynes';
acct = accountMap(name);

fprintf('%s has used %.1f miles on his/her account,\n', ...
name, acct{1})

fprintf(' and has %.1f miles remaining.\n', acct{2})

Carl Haynes has used 0.0 miles on his/her account,
and has 1342.9 miles remaining.

10-19

10 Map Containers

10-20

11

Combining Unlike Classes

• “Valid Combinations of Unlike Classes” on page 11-2

• “Combining Unlike Integer Types” on page 11-3

• “Combining Integer and Noninteger Data” on page 11-6

• “Combining Cell Arrays with Non-Cell Arrays” on page 11-7

• “Empty Matrices” on page 11-8

• “Concatenation Examples” on page 11-9

11 Combining Unlike Classes

Valid Combinations of Unlike Classes
Matrices and arrays can be composed of elements of most any MATLAB data
type as long as all elements in the matrix are of the same type. If you do
include elements of unlike classes when constructing a matrix, MATLAB
converts some elements so that all elements of the resulting matrix are of
the same type.

Data type conversion is done with respect to a preset precedence of classes.
The following table shows the five classes you can concatenate with an unlike
type without generating an error (that is, with the exception of character
and logical).

TYPE character integer single double logical

character character character character character invalid

integer character integer integer integer integer

single character integer single single single

double character integer single double double

logical invalid integer single double logical

For example, concatenating a double and single matrix always yields a
matrix of type single. MATLAB converts the double element to single to
accomplish this.

Concepts • “Combining Unlike Integer Types” on page 11-3
• “Combining Integer and Noninteger Data” on page 11-6
• “Combining Cell Arrays with Non-Cell Arrays” on page 11-7
• “Concatenation Examples” on page 11-9

11-2

Combining Unlike Integer Types

Combining Unlike Integer Types

In this section...

“Overview” on page 11-3

“Example of Combining Unlike Integer Sizes” on page 11-4

“Example of Combining Signed with Unsigned” on page 11-4

Overview
If you combine different integer types in a matrix (e.g., signed with unsigned,
or 8-bit integers with 16-bit integers), MATLAB returns a matrix in which all
elements are of one common type. MATLAB sets all elements of the resulting
matrix to the data type of the left-most element in the input matrix. For
example, the result of the following concatenation is a vector of three 16-bit
signed integers:

A = [int16(450) uint8(250) int32(1000000)]

MATLAB also displays a warning to inform you that the result may not be
what you had expected:

A = [int16(450) uint8(250) int32(1000000)];
Warning: Concatenation with dominant (left-most) integer class
may overflow other operands on conversion to return class.

You can disable this warning by entering the following two commands directly
after the operation that caused the warning. The first command retrieves
the message identifier associated with the most recent warning issued by
MATLAB. The second command uses this identifier to disable any further
warnings of that type from being issued:

[msg, intcat_msgid] = lastwarn;
warning('off', intcat_msgid);

To re-enable the warning so that it will now be displayed, use

warning('on', intcat_msgid);

11-3

11 Combining Unlike Classes

You can use these commands to disable or enable the display of any MATLAB
warning.

Example of Combining Unlike Integer Sizes
After disabling the integer concatenation warnings as shown above,
concatenate the following two numbers once, and then switch their order. The
return value depends on the order in which the integers are concatenated.
The left-most type determines the data type for all elements in the vector:

A = [int16(5000) int8(50)]
A =

5000 50

B = [int8(50) int16(5000)]
B =

50 127

The first operation returns a vector of 16-bit integers. The second returns a
vector of 8-bit integers. The element int16(5000) is set to 127, the maximum
value for an 8-bit signed integer.

The same rules apply to vertical concatenation:

C = [int8(50); int16(5000)]
C =

50
127

Note You can find the maximum or minimum values for any MATLAB
integer type using the intmax and intmin functions. For floating-point types,
use realmax and realmin.

Example of Combining Signed with Unsigned
Now do the same exercise with signed and unsigned integers. Again, the
left-most element determines the data type for all elements in the resulting
matrix:

11-4

Combining Unlike Integer Types

A = [int8(-100) uint8(100)]
A =

-100 100

B = [uint8(100) int8(-100)]
B =

100 0

The element int8(-100) is set to zero because it is no longer signed.

MATLAB evaluates each element prior to concatenating them into a combined
array. In other words, the following statement evaluates to an 8-bit signed
integer (equal to 50) and an 8-bit unsigned integer (unsigned -50 is set to
zero) before the two elements are combined. Following the concatenation, the
second element retains its zero value but takes on the unsigned int8 type:

A = [int8(50), uint8(-50)]
A =

50 0

11-5

11 Combining Unlike Classes

Combining Integer and Noninteger Data
If you combine integers with double, single, or logical classes, all elements
of the resulting matrix are given the data type of the left-most integer. For
example, all elements of the following vector are set to int32:

A = [true pi int32(1000000) single(17.32) uint8(250)]

11-6

Combining Cell Arrays with Non-Cell Arrays

Combining Cell Arrays with Non-Cell Arrays
Combining a number of arrays in which one or more is a cell array returns a
new cell array. Each of the original arrays occupies a cell in the new array:

A = [100, {uint8(200), 300}, 'MATLAB'];
whos A

Name Size Bytes Class Attributes

A 1x4 477 cell

Each element of the combined array maintains its original class:

fprintf('Classes: %s %s %s %s\n',...
class(A{1}),class(A{2}),class(A{3}),class(A{4}))

Classes: double uint8 double char

11-7

11 Combining Unlike Classes

Empty Matrices
If you construct a matrix using empty matrix elements, the empty matrices
are ignored in the resulting matrix:

A = [5.36; 7.01; []; 9.44]
A =

5.3600
7.0100
9.4400

11-8

Concatenation Examples

Concatenation Examples

In this section...

“Combining Single and Double Types” on page 11-9

“Combining Integer and Double Types” on page 11-9

“Combining Character and Double Types” on page 11-10

“Combining Logical and Double Types” on page 11-10

Combining Single and Double Types
Combining single values with double values yields a single matrix. Note
that 5.73*10^300 is too big to be stored as a single, thus the conversion from
double to single sets it to infinity. (The class function used in this example
returns the data type for the input value).

x = [single(4.5) single(-2.8) pi 5.73*10^300]
x =

4.5000 -2.8000 3.1416 Inf

class(x) % Display the data type of x
ans =

single

Combining Integer and Double Types
Combining integer values with double values yields an integer matrix. Note
that the fractional part of pi is rounded to the nearest integer. (The int8
function used in this example converts its numeric argument to an 8-bit
integer).

x = [int8(21) int8(-22) int8(23) pi 45/6]
x =

21 -22 23 3 7

class(x)
ans =

int8

11-9

11 Combining Unlike Classes

Combining Character and Double Types
Combining character values with double values yields a character matrix.
MATLAB converts the double elements in this example to their character
equivalents:

x = ['A' 'B' 'C' 68 69 70]
x =

ABCDEF

class(x)
ans =

char

Combining Logical and Double Types
Combining logical values with double values yields a double matrix.
MATLAB converts the logical true and false elements in this example to
double:

x = [true false false pi sqrt(7)]
x =

1.0000 0 0 3.1416 2.6458

class(x)
ans =

double

11-10

12

Using Objects

• “MATLAB Objects” on page 12-2

• “General Purpose Vs. Specialized Arrays” on page 12-5

• “Key Object Concepts” on page 12-8

• “Creating Objects” on page 12-11

• “Accessing Object Data” on page 12-14

• “Calling Object Methods” on page 12-16

• “Desktop Tools Are Object Aware” on page 12-19

• “Getting Information About Objects” on page 12-21

• “Copying Objects” on page 12-26

• “Destroying Objects” on page 12-33

12 Using Objects

MATLAB Objects

In this section...

“Getting Oriented” on page 12-2

“What Are Objects and Why Use Them?” on page 12-2

“Working with Objects” on page 12-3

“Objects In the MATLAB Language” on page 12-3

“Other Kinds of Objects Used by MATLAB” on page 12-4

Getting Oriented
This section provides information for people using objects. It does not provide
a thorough treatment of object-oriented concepts, but instead focuses on what
you need to know to use the objects provided with MATLAB.

If you are interested in object-oriented programming in the MATLAB
language, see “Object-Oriented Programming”. For background information
on objects, see object-oriented design.

What Are Objects and Why Use Them?
In the simplest sense, objects are special-purpose data structures that have a
specific set of operations that you can perform on the data they contain.

You do not need to know how objects implement operations or store data. This
fact makes objects modular and easy to pass within application programs. It
also isolates your code from changes to the object’s design and implementation.

MATLAB uses objects because they are a convenient way to package data.
Working with objects in MATLAB is like working with any variables and is
often more convenient because objects are optimized for specific purposes.
Think of an object as a neatly packaged collection of data that includes
functions that operate on the data. The documentation for any particular
object describes how to use it.

Objects are organized collections of data and functions that have been
designed for specific purposes.

12-2

http://en.wikipedia.org/wiki/Object-oriented_design

MATLAB® Objects

For example, an object might contain time series data that consists of
value/time-sample pairs and associated information like units, sample
uniformity, and so on. This object can have a set of specific operations
designed to perform analysis, such as filtering, interpolating, and plotting.

Working with Objects
You can perform the common operations on objects like you can on any
variable. For example, you can do the following things with objects:

• Create it and assign a variable name so you can reference it again

• Assign or reassign data to it (see “Accessing Object Data” on page 12-14)

• Operate on its data (see “Calling Object Methods” on page 12-16)

• Convert it to another class (if this operation is supported by the object’s
class)

• Save it to a MAT-file so you can reload it later (see save)

• Copy it (see “Copying Objects” on page 12-26)

• Clear it from the workspace (clear)

Any object can have restrictions on how you create it, access its data, or what
operations you can perform on it. Refer to the documentation for the particular
MATLAB object for a description of what you can do with that object.

Objects In the MATLAB Language
The MATLAB language uses many specialized objects. For example,
MException objects capture information when errors occur, timer objects
execute code at a certain time interval, the serial object enables you to
communicate with devices connected to your computer’s serial port, and so
on. MATLAB toolboxes often define objects to manage data and analyses
performed by the toolbox.

Objects provide specific functionality that is not necessarily available from
general purpose language components.

12-3

12 Using Objects

Other Kinds of Objects Used by MATLAB
The MATLAB language enables you to use objects that are defined other in
languages. The following objects are different from the MATLAB objects
described in this documentation. See the individual sections referenced below
for information on using these objects.

• Handle Graphics® objects create graphs and GUIs. These objects provide a
set/get interface to property values. You cannot subclass graphics objects.
See “Graphics Objects” for more information.

• Java classes enable you to access the capabilities of Java classes from
MATLAB programs. See “Java Libraries” for more information.

• Microsoft COM objects enable you to integrate these software components
into your application. See

“COM Objects” for more information.

• Microsoft .NET objects enable you to integrate .NET assemblies into your
application. See “.NET Libraries” for more information.

• User-defined MATLAB objects created prior to Version 7.6 used different
syntax for class definition (no classdef block) and exhibit other differences.
See “Compatibility with Previous Versions ” for more information.

12-4

General Purpose Vs. Specialized Arrays

General Purpose Vs. Specialized Arrays

In this section...

“How They Differ” on page 12-5

“Using General-Purpose Data Structures” on page 12-5

“Using Specialized Objects” on page 12-6

How They Differ
The MATLAB language uses both general-purpose and specialized arrays.
For example, numeric, struct, and cell arrays provide general-purpose
data storage. You typically extract data from the array and pass this data to
functions (for example, to perform mathematical analysis). Then, you store
the result in general-purpose arrays.

When using a specialized object, you typically pass data to a function that
creates the object. Once created, you use specially defined functions to operate
on the data. These functions are unique to the object and are designed
specifically for the type and structure of the data contained by the object.

Using General-Purpose Data Structures
A commonly used general-purpose data structure references data via
fieldnames. For example, these statements create a MATLAB struct (a
MATLAB structure array):

s.Data = rand(10,1);
s.Time = .01:.01:.1;
s.Name = 'Data1';
s.Units = 'seconds';

The structure s contains two arrays of numbers. However, s is a generic type
in the sense that MATLAB does not define special functions to operate on the
data in this particular structure. For example, while s contains two fields that
would be useful to plot, Data and Time, you cannot pass s to the plot function:

plot(s)
Error using plot

12-5

12 Using Objects

Not enough input arguments.

While s has enough information to create a plot of Data versus Time, plot
cannot access this data because structures like s can contain any values in
its fields and the fields can have any name. Just because one field is named
Data does not force you to assign data to that field.

To plot the data in s, you have to extract the data from the fields, pass them
as numeric arrays in the desired order to the plot function, add a title,
labels, and so on:

plot(s.Time,s.Data)
title(['Time Series Plot: ' s.Name])
xlabel(['Time (' s.Units ')'])
ylabel(s.Name)

You could create a function to perform these steps for you. Other programs
using the structure s would need to create their own functions or access the
one you created.

Using Specialized Objects
Compare the array s above to an object that you have designed specifically
to contain and manipulate time series data. For example, the following
statement creates a MATLAB timeseries object. It is initialized to store the
same data as the structure s above:

tsobj = timeseries(rand(10,1),.01:.01:.1,'Name','Data1');

The function that creates the object tsobj, accepts sample data, sample
times, a property name/property value pair (Name/Data1), and uses a default
value of Units (which is seconds).

The designer of this object created a special version of the plot function that
works directly with this object. For example:

plot(tsobj)

12-6

General Purpose Vs. Specialized Arrays

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (seconds)

D
at

a1

Time Series Plot:Data1

Notice how the object’s plot function creates a graph that is plotted and
labeled with the data from the tsobj object. As a user of this object, you do
not need write your own code to produce this graph. The class design specifies
the standard way to present graphs of timeseries data and all clients of this
object use the same code for plotting.

See “Time Series Objects” for more on using MATLAB timeseries objects.

12-7

12 Using Objects

Key Object Concepts

In this section...

“Basic Concepts” on page 12-8

“Classes Describe How to Create Objects” on page 12-8

“Properties Contain Data” on page 12-9

“Methods Implement Operations” on page 12-9

“Events are Notices Broadcast to Listening Objects” on page 12-10

Basic Concepts
There are some basic concepts that are fundamental to objects. Objects
represent something in the real world, like an error condition or the set
of data you collected in a product test. Objects enable you to do something
useful, like provide an error report or analyze and present the results of tests.

There are basic components that MATLAB uses to realize the design of an
object. These components include:

• Classes

• Properties

• Methods

• Events

Classes Describe How to Create Objects
A class defines a set of similar objects. It is a description from which MATLAB
creates a particular instance of the class, and it is the instance (that is, the
object) that contains actual data. Therefore, while there is a timeseries
class, you work with timeseries objects.

Classes are defined in code files — either as separate .m files or built-in to the
MATLAB executable. Objects are specific representations of a class that you
access through workspace variables.

12-8

Key Object Concepts

Properties Contain Data
Objects store data in properties. Consider a timeseries object as an example.
timeseries object properties contain time series data, corresponding time
values, and related information, such as units, events, data quality, and
interpolation method. MATLAB objects enable you to access property data
directly (see “Accessing Object Data” on page 12-14 for information on
property syntax).

Properties are sometimes called fields in other programming languages and
are similar to the fields of MATLAB structures. Properties have descriptive
names, such as Data and DataInfo, in the case of timeseries objects, and
can contain any kind of MATLAB data, including other objects.

An object, then, is a container for a predefined set of data. Unlike a cell array
or structure, you cannot add new properties or delete defined properties
from an object. Doing so would compromise the object’s intended purpose
and violate the class design.

The class design can restrict the values you can assign to a property. For
example, a Length property might restrict possible values to positive integers
or might be read only and determine its own value when queried.

Methods Implement Operations
Class methods are functions designed to work with objects of a particular
class. Methods enable the class designer to implement specific operations that
are optimized for the data contained in the object. You do not have to extract
the data from the object, modify its format, and pass it to a general-purpose
MATLAB function because the class defines methods with an awareness of
the object’s structure.

Methods can define operations that are unique to a particular class of object,
such as adding a data sample to an existing set of time series data, or can
overload common operations in a way that makes sense for the particular
object. For example, timeseries objects have an addsample method to add
a new data sample to an existing timeseries object. Also, timeseries
overloads the MATLAB plot function to work with timeseries objects.

12-9

12 Using Objects

MATLAB software determines which overloaded version of a method to call
based on the class of the object passed as an argument. If you execute a
MATLAB statement like:

tsobjnew = tsobj1 + tsobj2;

where tsobj1 and tsobj2 are timeseries objects, MATLAB calls the
timeseries version of the + operation (if defined) and returns a new
timeseries object.

Because the timeseries class defines the operation, you can add a
timeseries object to a scalar number:

tsobjnew = tsobj1 + 4;

The class definition determines what happens when you add a scalar double
to a timeseries object (the scalar is added to each Data value).

Methods make working with objects convenient for the user, but also provide
advantages to the class designer. Methods hide implementation details from
users—you do not need to create your own functions to access and manipulate
data, as you would when using general-purpose data structures like structs
and cell arrays. This provides the flexibility to change the internal design
of an object without affecting object clients (i.e., application programs that
use the objects).

Events are Notices Broadcast to Listening Objects
Classes can defined names for specific actions and trigger the broadcast of
notices when those actions occur. Listeners respond to the broadcast of an
event notice by executing a predefined function.

For example, objects can listen for the change of the value of a property and
execute a function when that change occurs. If an object defines an event for
which you can define a listening object, the object’s documentation describes
that event. See “Events” for information on how class designers use events.

12-10

Creating Objects

Creating Objects

In this section...

“Class Constructor” on page 12-11

“When to Use Package Names” on page 12-11

Class Constructor
Usually, you create an object by calling a function designed for the purpose of
creating that specific class of object. For example, the following code creates a
timeseries object and assigns it to the variable tsboj:

load count.dat % Load some data
tsobj = timeseries(count(:,1),1:24,'Name','Data1');

The timeseries constructor creates an object and initializes its data with the
values specified as arguments. Classes that create objects define a special
method whose purpose is to create objects of the class. This method has the
same name as the class and is called the class constructor.

However, in some cases, you might create objects by calling other functions or
even using a GUI. For example, a try-catch block can return an MException
object that contains information about a specific error condition. In this case,
you do not explicitly create the object, rather it is returned by the catch
statement (see “Accessing Object Data” on page 12-14 for an example).

When to Use Package Names
A package is a container that provides a logical grouping for class and function
definitions. The class and function names within a given package must be
unique, but can be reused in other packages. Packages are folders that begin
with the + character.

If a package folder contains a class definition, then you must use the package
name when calling the class constructor. For example, this statement creates
a Map object, whose class definition file is in a folder in the containers
package:

mapobj = containers.Map({'rose','bicycle'},{'flower','machine'});

12-11

12 Using Objects

You need to use the package name to refer to:

• Class constructors (e.g., containers.Map), which you call to create an object

• Static methods (methods that do not require an object of the class as an
argument)

• Package functions (functions defined in the package)

However, because MATLAB uses the class of an object to determine which
ordinary method to call, you do not need to use the package name in
conjunction with object references. For example, suppose you have the
following folder structure:

pathfolder/+packagename/@ClassName/ClassName.m
pathfolder/+packagename/@ClassName/staticMethodName.m
pathfolder/+packagename/functionName.m

In the following examples, obj is the object you are creating.

% Create object of ClassName
obj = packagename.ClassName(...);

% Call methodName
obj.methodName(...);

% Set or get the value of property PropertyName
obj.PropertyName = x;
x = obj.PropertyName;

% Call static method staticMethodName
packagename.ClassName.staticMethodName(...);

% Call package function functionName
packagename.functionName(...)

If a package folder contains a class definition file, then consider the package
name as part of the class name. Wherever you need to use the class name,
include the package name. For example, containers.Map is the full class
name of the Map class.

12-12

Creating Objects

See the object’s user documentation for the syntax you need to use to create
objects.

See “Organizing Classes in Folders” and “Packages Create Namespaces” for
more information on the use of packages.

See “Importing Classes” for information on importing packages into functions.

12-13

12 Using Objects

Accessing Object Data

In this section...

“Listing Public Properties” on page 12-14

“Getting Property Values” on page 12-14

“Setting Property Values” on page 12-15

Listing Public Properties

Note Always use the correct case when referring to properties by name.

Display the names of all public object properties using the properties
function with the object’s class name or with an actual object. For example:

>> properties('MException')

Properties for class MException:
identifier
message
cause
stack

Getting Property Values
After creating an object, you can access the values of its properties:

try
a = rand(4);
a(17) = 7;

catch me % catch creates an MException object named me
disp(['Current error identifier: ' me.identifier])

end
Current error identifier: MATLAB:indexed_matrix_cannot_be_resized

Access the data in properties using dot notation:

object.PropertyName

12-14

Accessing Object Data

For example, you can access the message property of the MException object,
me, with this syntax:

me.message
ans =
In an assignment A(I) = B, a matrix A cannot be resized.

See “Capture Information About Exceptions” on page 21-5 for more
information on using MException objects.

Setting Property Values
Objects often restrict what values you can assign to them. For example, the
following timeseries object has 10 data values, each corresponding to a
sample time:

tsobj = timeseries(rand(10,1),1:10,'Name','Random Sample');

Now suppose you attempt to set the Data property to a three-element vector:

tsobj.Data = [1 2 3];
Error using timeseries.utreshape (line 864)
Size of the data array is incompatible with the time vector.
...

The timeseries class design ensures that the number of data samples
matches the number of time samples. This illustrates one of the advantages a
specialized object has over a general purpose-data structure like a MATLAB
struct.

12-15

12 Using Objects

Calling Object Methods

In this section...

“What Operations Can You Perform” on page 12-16

“Method Syntax” on page 12-16

“Class of Objects Returned by Methods” on page 12-18

What Operations Can You Perform
Methods define an object’s behavior. Consequently, classes implement
methods that an object user is unlikely to call directly. The user
documentation for the object you are using describes the operations you can
perform on any particular object.

You can list the methods defined by a class with the methods or methodsview
functions:

methods('timeseries')

Methods for class timeseries:

addevent gettsbetweenevents set
addsample horzcat setabstime
createTstoolNode idealfilter setinterpmethod
ctranspose init setprop
...

Method Syntax
Call an object’s method using dot notation:

returnedValue = object.methodName(args,...)

You also can call a method using function syntax, passing the object as the
first (left-most) argument.

returnedValue = methodName(object,args,...)

12-16

Calling Object Methods

For example, MException objects have a getReport method that returns
information about the error.

try
surf

catch me
disp(me.getReport)

end

Error using ==> surf at (line 50)
Not enough input arguments.

Dot and function notation are usually equivalent. That is, both of the
following statements return the MException report:

rpt = getReport(me); % Call getReport using function notation
rpt = me.getReport; % Call getReport using dot notation

Calling the Correct Method
It is possible for the function syntax to call an unexpected method if there is
more than one object in the argument list. Suppose there are two classes,
ClassA and ClassB, that define a method called addData. Suppose further
that ClassA is defined as being inferior to ClassB in precedence (something
that the class designer can do in the class definition). In this situation, given
objA is of ClassA and objB is of ClassB, the following two statement call
different methods:

addData(objA,objB) % Calls objB.addData
objA.addData(objB) % Calls objA.addData

If ClassA and ClassB had equal precedence, then the left-most argument
determines which method MATLAB calls (i.e., objA.addData in both
statements).

It is unlikely that you will encounter this particular scenario, however, if you
are calling a method that accepts more than one object as arguments, using
dot notation removes any ambiguity about which object’s method MATLAB
calls.

12-17

12 Using Objects

Class of Objects Returned by Methods
While methods sometimes return objects of the same class, this is not always
the case. For example, the MException object’s getReport returns a character
string:

try
surf

catch me
rpt = me.getReport;

end

whos
Name Size Bytes Class Attributes

me 1x1 1118 MException
rpt 1x126 252 char

Methods can return any type of value and properties can contain any type of
value. However, class constructor methods always return an object or array of
objects of the same type as the class.

12-18

Desktop Tools Are Object Aware

Desktop Tools Are Object Aware

In this section...

“Tab Completion Works with Objects” on page 12-19

“Editing Objects with the Variable Editor” on page 12-19

Tab Completion Works with Objects
MATLAB tab completion works with objects. For example, if you enter an
object name followed by a dot:

tsobj.

and then press the tab key, MATLAB pops up a selection box with a list of
properties and methods:

The more letters you complete after the dot, the more specific is the list. See
“Tab Completion” for more information.

Editing Objects with the Variable Editor
You can use the MATLAB Variable Editor to edit object properties. To open
an object in the Variable Editor, you can double-click the object name in the
Workspace browser or use the openvar command:

12-19

12 Using Objects

tsobj = timeseries(rand(10,1),.01:.01:.1,'Name','Data1');
openvar tsobj

See for more information.

12-20

Getting Information About Objects

Getting Information About Objects

In this section...

“The Class of Workspace Variables” on page 12-21

“Information About Class Members” on page 12-23

“Logical Tests for Objects” on page 12-23

“Displaying Objects” on page 12-24

“Getting Help for MATLAB Objects” on page 12-25

The Class of Workspace Variables
All workspace variables are of a specific class. For example, consider the
following variable created in your workspace:

load count.dat % Load some data
tsobj = timeseries(count(:,1),1:24,'Name','Data1');
whos

Name Size Bytes Class Attributes

count 24x3 576 double
tsobj 1x1 1261 timeseries

The whos command lists information about your workspace variables. Notice
that the variable loaded from the count.dat file (count) is an array of
doubles. You know, therefore, that you can perform indexing and arithmetic
operations on this array. For example:

newcount = sum(count,2);
newcount(8:15) = NaN;
bar(newcount)

Indexed assignment and the bar function work with inputs of class double.

12-21

12 Using Objects

0 5 10 15 20 25
0

100

200

300

400

500

600

However, the timeseries class does not define a bar method for timeseries
objects. The timeseries class defines a plotmethod for graphing because the
class design specified a line plot as the best way to represent time series data.

Extracting Data From Object Properties
Suppose you have a timeseries object and you want to work directly with the
numeric values of the timeseries data. You can extract data from the object
properties and assign these values to an array. For example

load count.dat
tsobj = timeseries(sum(count,2),1:24,'Name','DataSum');
d = tsobj.Data;
t = tsobj.Time;
n = tsobj.Name;
d(8:15) = NaN;
bar(t,d); title(n)

Testing for the Class of an Object
Suppose you create a function that operates on more than one class of object.
If you have a timeseries object, you call the timeseries plot method, but

12-22

Getting Information About Objects

if the object is of class double, you can call the bar function (which isn’t
supported by timeseries objects). You could use isa as in the following code
to make this determination:

obj = tsobj.Data; % Define an input variable
function myPlotter(obj)

if isa(obj,'timeseries')
plot(obj)

elseif isa(obj,'double')
bar(obj)

end
end

Information About Class Members
These functions provide information about the object.

Function Purpose

class Return class of object

events List of event names defined by the class

methods List of methods implemented by the class

methodsview Information on class methods in separate window

properties List of class property names

Logical Tests for Objects
In functions, you might need conditional statements to determine the status
of an object before performing certain actions. For example, you might
perform different actions based on the class of an object (see “Testing for the
Class of an Object” on page 12-22). The following functions provide logical
tests for objects:

12-23

12 Using Objects

Function Purpose

isa Determine whether argument belongs to a particular
class. True for object’s class and all of object’s
superclasses.

isequal Determine if two objects are equal.

isobject Determine whether the input is a MATLAB object.

Testing for Object Equality
isequal finds two objects to be equal if all the following conditions are met:

• Both objects are of the same class

• Both objects are of the same size

• All corresponding property values are equal

isequal tests the value of every array element in every property and every
property of every object contained in the objects being tested. As contained
objects are tested for equality, MATLAB calls each object’s own version of
isequal (if such versions exist).

If objects contain large amounts of data stored in other objects, then testing
for equality can be a time-consuming process.

Identifying MATLAB Objects
The isobject function returns true only for MATLAB objects. For Java
objects, use isjava. For Handle Graphics objects, use ishandle.

Note ishandle returns false for MATLAB handle objects. See “Testing for
Handle or Value Class” on page 12-31 for more information.

Displaying Objects
When you issue commands that return objects and do not terminate those
commands with a semicolon, or when you pass an object to the disp function,
MATLAB displays information about the object. For example:

12-24

Getting Information About Objects

hobj = containers.Map({'Red Sox','Yankees'},
{'Boston','New York'})
hobj =

containers.Map handle
Package: containers

Properties:
Count: 2

KeyType: 'char'
ValueType: 'char'

Methods, Events, Superclasses

This information includes links (shown in blue) to documentation on the
object’s class and superclasses, and lists of methods, events, and superclasses.
Properties and their current values are also listed.

Some classes (timeseries, for example) redefine how they display objects to
provide more useful information for this particular class.

Getting Help for MATLAB Objects
You can get documentation for MATLAB objects using the doc command
with the class name. To see the reference pages for the objects used in this
chapter, use the following commands:

doc timeseries
doc MException
doc containers.Map % Include the package name

12-25

12 Using Objects

Copying Objects

In this section...

“Two Copy Behaviors” on page 12-26

“Value Object Copy Behavior” on page 12-26

“Handle Object Copy Behavior” on page 12-27

“Testing for Handle or Value Class” on page 12-31

Two Copy Behaviors
There are two fundamental kinds of MATLAB classes—handles and values.

Value classes create objects that behave like ordinary MATLAB variables
with respect to copy operations. Copies are independent values. Operations
that you perform on one object do not affect copies of that object.

Handle classes create objects that behave as references. This is because a
handle, and all copies of this handle, refer to the same underlying object.
When you create a handle object, you can copy the handle, but not the data
referenced by the object’s properties. Any operations you perform on a handle
object are visible from all handles that reference that object.

Value Object Copy Behavior
MATLAB numeric variables are of value objects. For example, when you copy
a to the variable b, both variables are independent of each other. Changing
the value of a does not change the value of b:

a = 8;
b = a;

Now reassign a and b is unchanged:

a = 6;
b
b =

8

12-26

Copying Objects

Clearing a does not affect b:

clear a
b
b =

8

Value Object Properties
The copy behavior of values stored as properties in value objects is the same.
For example, suppose vobj1 is a value object with property a:

vobj1.a = 8; % Property is set to a value

If you copy vobj1 to vobj2, and then change the value of vobj1 property a, you
can see that the value of the copied object’s property vobj2.a is unaffected:

vobj2 =vobj1;
vobj1.a = 5;

vobj2.a
ans =

8

Handle Object Copy Behavior
Here is a handle class called HdClass that defines a property called Data.

classdef HdClass < handle
properties

Data
end
methods

function obj = HdClass(val)
if nargin > 0

obj.Data = val;
end

end
end

end

Create an object of this class with the following statement:

12-27

12 Using Objects

hobj1 = HdClass(8)

Because this statement is not terminated with a semicolon, MATLAB displays
information about the object:

hobj1 =

HdClass handle

Properties:
Data: 8

Methods, Events, Superclasses

The variable hobj1 is a handle that references the object created. Copying
hobj1 to hobj2 results in another handle (the variable hobj2) referring to
the same object:

hobj2 = hobj1
hobj2 =

HdClass handle

Properties:
Data: 8

Methods, Events, Superclasses

Because handle objects reference the data contained in their properties,
copying an object copies the handle to a new variable name, but the properties
still refer to the same data. For example, given that hobj1 is a handle object
with property Data:

hobj1.Data

ans =

8

Change the value of hobj1’s Data property and the value of the copied object’s
Data property also changes:

12-28

Copying Objects

hobj1.Data = 5;

hobj2.Data

ans =

5

Because hobj2 and hobj1 are handles to the same object, changing the copy,
hobj2, also changes the data you access through handle hobj1:

hobj2.Data = 17;
hobj1.Data

ans =

17

Copy Method for Handle Classes
Handle classes can derive copy functionality from the matlab.mixin.Copyable
class. Class designers can investigate the use of this class in their class design.

Reassigning Handle Variables
Reassigning a handle variable produces the same result as reassigning any
MATLAB variable. When you create a new object and assign it to hobj1:

hobj1 = HdClass(3.14);

hobj1 references the new object, not the same object referenced previously
(and still referenced by hobj2).

Clearing Handle Variables
When you clear a handle from the workspace, MATLAB removes the
variable, but does not removed the object referenced by the handle. Therefore,
given hobj1 and hobj2, which both reference the same object, you can clear
either handle without affecting the object:

hobj1.Data = 2^8;

12-29

12 Using Objects

clear hobj1
hobj2
hobj2 =

HdClass handle

Properties:
Data: 256

Methods, Events, Superclasses

If you clear both hobj1 and hobj2, then there are no references to the object
and MATLAB deletes the object and frees the memory used by that object.

Deleting Handle Objects
To remove an object referenced by any number of handles, use delete. Given
hobj1 and hobj2, which both reference the same object, if you delete either
handle, MATLAB deletes the object:

hobj1 = HdClass(8);
hobj2 = hobj1;
delete(hobj1)
hobj2

hobj2 =

deleted HdClass handle

Methods, Events, Superclasses

See “Destroying Objects” on page 12-33 for more information about object
lifecycle.

Modifying Objects
When you pass an object to a function, MATLAB follows pass by value
semantics. This means that MATLAB passes a copy of the object to the
function. If you modify the object in the function, MATLAB modifies only the
copy of the object. The differences in copy behavior between handle and value
classes are important in such cases:

12-30

Copying Objects

• Value class — The function must return the modified copy of the object
to the caller.

• Handle class — The copy refers to the same data as the original object.
Therefore, the function does not need to return the modified copy.

See “Passing Objects to Functions” for more information.

More Information About Handle and Value Classes
For information about handle and value classes for class designers, see
“Handle Classes” in the Object-Oriented Programming documentation.

Testing for Handle or Value Class
If you are writing MATLAB programs that copy objects, you might need to
determine if any given object is a handle or a value. To determine if an object
is a handle object, use the isa function:

isa(obj,'handle')

For example, the containers.Map class creates a handle object:

hobj = containers.Map({'Red Sox','Yankees'}, {'Boston','New York'});

isa(hobj,'handle')

ans =

1

hobj is also a containers.Map object:

isa(hobj,'containers.Map')

ans =

1

If you query the class of hobj, you see that it is a containers.Map object:

class(hobj)

12-31

12 Using Objects

ans =

containers.Map

The class function returns the specific class of an object, whereas isa
returns true for any of the object’s superclasses as well. This behavior is
consistent with the object-oriented concept that an object is a member of all its
superclasses. Therefore, it is true that a containers.Map object is a handle
object and a containers.Map object.

There is no equivalent test for value classes because there is no value base
class. If an object is a value object, isa(object,'handle') returns false
(i.e., logical 0).

See “Map Containers” for more information on the containers.Map class.

12-32

Destroying Objects

Destroying Objects

In this section...

“Object Lifecycle” on page 12-33

“Difference Between clear and delete” on page 12-33

Object Lifecycle
An object’s lifecycle ends when:

• You reassign a new value to that variable.

• The object is no longer used in a function.

• Function execution ends.

MATLAB handle classes have a special method called delete that MATLAB
calls when a handle object lifecycle ends.

Calling delete on an object explicitly makes all copies of a handle object
invalid because it destroys the data associated with the object and frees
memory used by deleted objects. MATLAB calls delete automatically so it is
not necessary for you to do so. Classes can redefine the handle class delete
method to perform other cleanup operations, like closing files or saving data.

Deleting a handle object renders all copies invalid:

hobj1 = HdClass(8);
hobj2 = hobj1;
delete(hobj1)
hobj2.Data
Invalid or deleted object.

Difference Between clear and delete
The handle class delete method removes the handle object, but does not
clear the variable name. The clear function removes a variable name, but
does not remove the values to which the variable refers. For example, if you
have two variables that refer to the same handle object, you can clear either
one without affecting the actual object:

12-33

12 Using Objects

hobj = containers.Map({'Red Sox','Yankees'}, {'Boston','New York'});

hobj_copy = hobj;

clear hobj

city = hobj_copy('Red Sox')

city =

Boston

If you call clear on all handle variables that refer to the same handle object,
then you have lost access to the object and MATLAB destroys the object. That
is, when there are no references to an object, the object ceases to exist.

On value objects, you can call clear to remove the variable. However,
MATLAB does not automatically call a value class delete method, if one
exists, when you clear the variable.

12-34

13

Defining Your Own Classes

All MATLAB data types are implemented as object-oriented classes. You
can add data types of your own to your MATLAB environment by creating
additional classes. These user-defined classes define the structure of your
new data type, and the functions, or methods, that you write for each class
define the behavior for that data type.

These methods can also define the way various MATLAB operators, including
arithmetic operations, subscript referencing, and concatenation, apply to the
new data types. For example, a class called polynomial might redefine the
addition operator (+) so that it correctly performs the operation of addition
on polynomials.

With MATLAB classes you can

• Create methods that overload existing MATLAB functionality

• Restrict the operations that are allowed on an object of a class

• Enforce common behavior among related classes by inheriting from the
same parent class

• Significantly increase the reuse of your code

For more information, see “Classes in the MATLAB Language”.

13 Defining Your Own Classes

13-2

Scripts and Functions

• Chapter 14, “Scripts”

• Chapter 15, “Function Basics”

• Chapter 16, “Function Arguments”

• Chapter 17, “Debugging MATLAB Code”

• Chapter 18, “Presenting MATLAB Code”

• Chapter 19, “Coding and Productivity Tips”

• Chapter 20, “Programming Utilities”

14

Scripts

• “Create Scripts” on page 14-2

• “Add Comments to Programs” on page 14-4

• “Run Code Sections” on page 14-6

• “Scripts vs. Functions” on page 14-16

14 Scripts

Create Scripts
Scripts are the simplest kind of program file because they have no input
or output arguments. They are useful for automating series of MATLAB
commands, such as computations that you have to perform repeatedly from
the command line or series of commands you have to reference.

You can open a new script in the following ways:

• Highlight commands from the Command History, right-click, and select
Create Script.

• Click the New Script button on the Home tab.

• Use the edit function.

This code opens the file file_name:

edit file_name

If file_name is unspecified, MATLAB opens a new file called Untitled.

For example, suppose you save this code that generates random numbers
between 0 and 100 as a script called numGenerator.m:

columns = 10000;
rows = 1;
bins = columns/100;

rng(now);
list = 100*rand(rows,columns);
hist(list,bins)

You can run the code in numGenerator.m using either of these methods:

• Type the script name numGenerator on the command line and press Enter

• Click the Run button on the Editor tab

14-2

Create Scripts

When execution completes, the variables (columns, rows, bins and list)
remain in the MATLAB workspace. To see a listing of variables, enter whos at
the command prompt. Scripts share the base workspace with your interactive
MATLAB session and with other scripts.

Concepts • “Base and Function Workspaces” on page 15-9

14-3

14 Scripts

Add Comments to Programs
This topic explains how and why to add comments to your program files.

When you write code, it is a good practice to add comments that describe
the code. Comments allow others to understand your code, and can refresh
your memory when you return to it later. Add comments to MATLAB code
using the percent (%) symbol.

Comment lines can appear anywhere in a program file, and you can append
comments to the end of a line of code. For example,

% Add up all the vector elements.
y = sum(x) % Use the sum function.

Comments are also useful for program development and testing—comment
out any code that does not need to run. To comment out multiple lines of code,
you can use the block comment operators, %{ and %}:

a = magic(3);
%{
sum(a)
diag(a)
sum(diag(a))
%}
sum(diag(fliplr(a)))

The %{ and %} operators must appear alone on the lines that immediately
precede and follow the block of help text. Do not include any other text on
these lines.

To comment out part of a statement that spans multiple lines, use an ellipses
(...) instead of a percent sign. For example,

header = ['Last Name, ', ...
'First Name, ', ...

... 'Middle Initial, ', ...
'Title']

14-4

Add Comments to Programs

The MATLAB Editor includes tools and context menu items to help you add,
remove, or change the format of comments for MATLAB, Java, and C/C++
code. For example, if you paste lengthy text onto a comment line, such as

% This is a program that has a comment that is a little more than 75 columns wide.

disp('Hello, world')

and then press the button next to Comment on the Editor tab, the
Editor wraps the comment:

% This is a program that has a comment that is a little more than 75

% columns wide.

disp('Hello, world')

By default, as you type comments in the Editor, the text wraps when it reaches
a column width of 75. To change the column where the comment text wraps,
or to disable automatic comment wrapping, adjust the Editor/Debugger
Language preference settings labeled Comment formatting.

The Editor does not wrap comments with:

• Code section titles (comments that begin with %%)

• Long contiguous strings, such as URLs

• Bulleted list items (text that begins with * or #) onto the preceding line

Related
Examples

• “Add Help for Your Program” on page 15-5

Concepts • “Editor/Debugger Preferences”

14-5

14 Scripts

Run Code Sections

In this section...

“Divide Your File into Code Sections” on page 14-6

“Evaluate Code Sections” on page 14-7

“Navigate Among Code Sections in a File” on page 14-8

“Example of Evaluating Code Sections” on page 14-9

“Change the Appearance of Code Sections” on page 14-12

“Use Code Sections with Control Statements and Functions” on page 14-13

Divide Your File into Code Sections
MATLAB files often consist of many commands. You typically focus efforts
on a single part of your program at a time, working with the code in chunks.
Similarly, when explaining your files to others, often you describe your
program in chunks. To facilitate these processes, use code sections, also
known as code cells or cell mode. A code section contains contiguous lines of
code that you want to evaluate as a group in a MATLAB script, beginning
with two comment characters (%%).

To define code section boundaries explicitly, insert section breaks using these
methods:

• On the Editor tab, in the Edit section, in the Comment button group, click

.

• Enter two percent signs (%%) at the start of the line where you want to
begin the new code section.

The text on the same line as %% is called the section title . Including section
titles is optional, however, it improves the readability of the file and appears
as a heading if you publish your code.

14-6

Run Code Sections

Evaluate Code Sections
As you develop a MATLAB file, you can use the Editor section features to
evaluate the file section-by-section. This method helps you to experiment
with, debug, and fine-tune your program. You can navigate among sections,
and evaluate each section individually. To evaluate a section, it must contain
all the values it requires, or the values must exist in the MATLAB workspace.

The section evaluation features run the section code currently highlighted
in yellow. MATLAB does not automatically save your file when evaluating
individual code sections. The file does not have to be on your search path.

This table provides instructions on evaluating code sections.

Operation Instructions

Run the code in the
current section.

• Place the cursor in the code section.

• On the Editor tab, in the Run section, click
Run Section.

Run the code in the
current section, and
then move to the next
section.

• Place the cursor in the code section.

• On the Editor tab, in the Run section, click
Run and Advance.

Run all the code in
the file.

• Type the saved script name in the Command
Window.

• On the Editor tab, in the Run section, click
Run.

14-7

14 Scripts

Note You cannot debug when running individual code sections. MATLAB
ignores any breakpoints.

Increment Values in Code Sections
You can increment numbers within a section, rerunning that section after
every change. This helps you fine-tune and experiment with your code.

To increment or decrement a number in a section:

1 Highlight or place your cursor next to the number.

2 Right-click to open the context menu.

3 Select Increment Value and Run Section. A small dialog box appears.

4 Input appropriate values in the / text box or / text box.

5 Click the , , , or button to add to, subtract from, multiply, or
divide the selected number in your section.

MATLAB runs the section after every click.

Note MATLAB software does not automatically save changes you make to
the numbers in your script.

Navigate Among Code Sections in a File
You can navigate among sections in a file without evaluating the code within
those sections. This facilitates jumping quickly from section to section within
a file. You might do this, for example, to find specific code in a large file.

14-8

Run Code Sections

Operation Instructions

Move to the next
section.

• On the Editor tab, in the Run section, click
Advance.

Move to the previous
section.

• Press Ctrl + Up arrow.

Move to a specific
section.

• On the Editor tab, in the Navigate section, use
the Go To to move the cursor to a selected
section.

Example of Evaluating Code Sections
This example defines two code sections in a file called sine_wave.m and then
increments a parameter to adjust the created plot. To open this file in your
Editor, run the following command, and then save the file to a local folder:

edit(fullfile(matlabroot,'help','techdoc','matlab_env',...
'examples','sine_wave.m'))

After the file is open in your Editor:

1 Insert a section break and the following title on the first line of the file.

%% Calculate and Plot Sine Wave

2 Insert a blank line and a second section break after plot(x,y). Add a section
title, Modify Plot Properties, so that the entire file contains this code:

%% Calculate and Plot Sine Wave
% Define the range for x.
% Calculate and plot y = sin(x).
x = 0:1:6*pi;
y = sin(x);
plot(x,y)

%% Modify Plot Properties
title('Sine Wave','FontWeight','bold')
xlabel('x')

14-9

14 Scripts

ylabel('sin(x)')
set(gca,'Color','w')
set(gcf, 'MenuBar', 'none')

3 Save the file.

4 Place your cursor in the section titled Calculate and Plot Sine Wave. On
the Editor tab, in the Run section, click Run Section.

A figure displaying a course plot of sin(x) appears.

5 Smooth the sine plot.

a Highlight 1 in the statement: x = 0:1:6*pi; .

b Right-click and select Increment Value and Run Section. A small
dialog box appears.

c Type 2 in the / text box.

14-10

Run Code Sections

d Click the button several times.

The sine plot becomes smoother after each subsequent click.

e Close the Figure and save the file.

6 Run the entire sine_wave.m file. A smooth sine plot with titles appears in a
new Figure.

14-11

14 Scripts

Change the Appearance of Code Sections
You can change how code sections appear within the MATLAB Editor.
MATLAB highlights code sections in yellow, by default, and divides them with
horizontal lines. When the cursor is positioned in any line within a section,
the Editor highlights the entire section.

To change how code sections appear:

1 On the Home tab, in the Environment section, click Preferences.

The Preference dialog box appears.

2 In the left pane, select Colors > Programming Tools.

3

Under Section display options, select the appearance of your code
sections.

14-12

Run Code Sections

You can choose whether to highlight the sections, the color of the
highlighting, and whether dividing lines appear between code sections.

Use Code Sections with Control Statements and
Functions
Unexpected results can appear when using code sections within control
statements and functions because MATLAB automatically inserts section
breaks that do not appear in the Editor unless you insert section breaks
explicitly. This is especially true when nested code is involved. Nested code
occurs wherever you place a control statement or function within the scope of
another control statement or function.

MATLAB automatically defines section boundaries in a code block, according
to this criteria:

• MATLAB inserts a section break at the top and bottom of a file, creating a
code section that encompasses the entire file. However, the Editor does not
highlight the resulting section, which encloses the entire file, unless you
add one or more explicit code sections to the file.

• If you define a section break within a control flow statement (such as an if
or while statement), MATLAB automatically inserts section breaks at the
lines containing the start and end of the statement.

• If you define a section break within a function, MATLAB inserts section
breaks at the function declaration and at the function end statement. If you
do not end the function with an end statement, MATLAB behaves as if the
end of the function occurs immediately before the start of the next function.

If an automatic break occurs on the same line as a break you insert, they
collapse into one section break.

Nested Code Section Breaks
The following code illustrates the concept of nested code sections:

t = 0:.1:pi*4;
y = sin(t);

for k = 3:2:9
%%

14-13

14 Scripts

y = y + sin(k*t)/k;
if ~mod(k,3)

%%
display(sprintf('When k = %.1f',k));
plot(t,y)

end
end

If you copy and paste this code into a MATLAB Editor, you see that the two
section breaks create three nested levels:

• At the outermost level of nesting, one section spans the entire file.

MATLAB only defines section in a code block if you specify section breaks
at the same level within the code block. Therefore, MATLAB considers the
cursor to be within the section that encompasses the entire file.

• At the second-level of nesting, a section exists within the for loop.

14-14

Run Code Sections

• At the third-level of nesting, one section exists within the if statement.

Concepts • “Scripts vs. Functions” on page 14-16

14-15

14 Scripts

Scripts vs. Functions
This topic discusses the differences between scripts and functions, and shows
how to convert a script to a function.

Program files can be scripts that simply execute a series of MATLAB
statements, or they can be functions that also accept input arguments and
produce output. Both scripts and functions contain MATLAB code, and both
are stored in text files with a .m extension. However, functions are more
flexible and more easily extensible.

For example, create a script in a file named triarea.m that computes the
area of a triangle:

b = 5;
h = 3;
a = 0.5*(b.* h)

After you save the file, you can call the script from the command line:

triarea

a =
7.5000

To calculate the area of another triangle using the same script, you could
update the values of b and h in the script and rerun it. Each time you run it,
the script stores the result in a variable named a that is in the base workspace.

However, instead of manually updating the script each time, you can
make your program more flexible by converting it to a function. Replace
the statements that assign values to b and h with a function declaration
statement. The declaration includes the function keyword, the names of
input and output arguments, and the name of the function.

function a = triarea(b,h)
a = 0.5*(b.* h);

After you save the file, you can call the function with different base and height
values from the command line without modifying the script:

14-16

Scripts vs. Functions

a1 = triarea(1,5)
a2 = triarea(2,10)
a3 = triarea(3,6)

a1 =
2.5000

a2 =
10

a3 =
9

Functions have their own workspace, separate from the base workspace.
Therefore, none of the calls to the function triarea overwrite the value of a in
the base workspace. Instead, the function assigns the results to variables a1,
a2, and a3.

Related
Examples

• “Create Scripts” on page 14-2
• “Create Functions in Files” on page 15-2

Concepts • “Base and Function Workspaces” on page 15-9

14-17

14 Scripts

14-18

15

Function Basics

• “Create Functions in Files” on page 15-2

• “Add Help for Your Program” on page 15-5

• “Run Functions in the Editor” on page 15-7

• “Base and Function Workspaces” on page 15-9

• “Share Data Between Workspaces” on page 15-10

• “Check Variable Scope in Editor” on page 15-15

• “Types of Functions” on page 15-19

• “Anonymous Functions” on page 15-23

• “Local Functions” on page 15-30

• “Nested Functions” on page 15-32

• “Variables in Nested and Anonymous Functions” on page 15-39

• “Private Functions” on page 15-41

• “Function Precedence Order” on page 15-43

15 Function Basics

Create Functions in Files
This example shows how to create a function in a program file.

Write a Function

Open a file in a text editor. Within the file, declare the function and add
program statements:

function f = fact(n)
f = prod(1:n);

Function fact accepts a single input argument n, and returns the factorial
of n in output argument f.

The definition statement is the first executable line of any function. Function
definitions are not valid at the command line or within a script. Each function
definition includes these elements.

function keyword
(required)

Use lowercase characters for the keyword.

Output arguments
(optional)

If your function returns more than one output,
enclose the output names in square brackets, such as

function [one,two,three] = myfunction(x)

If there is no output, either omit it,

function myfunction(x)

or use empty square brackets:

function [] = myfunction(x)

15-2

Create Functions in Files

Function name
(required)

Valid function names follow the same rules as
variable names. They must start with a letter, and
can contain letters, digits, or underscores.

Note To avoid confusion, use the same name for
both the file and the first function within the file.
MATLAB associates your program with the file
name, not the function name.

Input arguments
(optional)

If your function accepts any inputs, enclose their
names in parentheses after the function name.
Separate inputs with commas, such as

function y = myfunction(one,two,three)

If there are no inputs, you can omit the parentheses.

Tip When you define a function with multiple input or output arguments, list
any required arguments first. This allows you to call your function without
specifying optional arguments.

The body of a function can include valid MATLAB expressions, control flow
statements, comments, blank lines, and nested functions. Any variables that
you create within a function are stored within a workspace specific to that
function, which is separate from the base workspace.

Functions end with either an end statement, the end of the file, or the
definition line for another function, whichever comes first. The end statement
is required only when a function in the file contains a nested function (a
function completely contained within its parent).

Program files can contain multiple functions. The first function is the main
function, and is the function that MATLAB associates with the file name.
Subsequent functions that are not nested are called local functions. They are
only available to other functions within the same file.

15-3

15 Function Basics

Save the File

Save the file (in this example, fact.m), either in the current folder or in a
folder on the MATLAB search path. MATLAB looks for programs in these
specific locations.

Call the Function

From the command line, call the new fact function to calculate 5!, using the
same syntax rules that apply to calling functions installed with MATLAB:

x = 5;
y = fact(x);

The variables that you pass to the function do not need to have the same
names as the arguments in the function definition line.

See Also function | edit | clear | what | which

Related
Examples

• “Files and Folders that MATLAB Accesses”
• “Add Help for Your Program” on page 15-5
• “Support Variable Number of Inputs” on page 16-4

Concepts • “Base and Function Workspaces” on page 15-9
• “Local Functions” on page 15-30
• “Nested Functions” on page 15-32
• “Debugging Process and Features” on page 17-2

15-4

Add Help for Your Program

Add Help for Your Program
This example shows how to provide help for the programs you write. Help
text appears in the Command Window when you use the help function.

Create help text by inserting comments at the beginning of your program. If
your program includes a function, position the help text immediately below
the function definition line (the line with the function keyword).

For example, create a function in a file named addme.m that includes help text:

function c = addme(a,b)
% ADDME Add two values together.
% C = ADDME(A) adds A to itself.
% C = ADDME(A,B) adds A and B together.
%
% See also SUM, PLUS.

switch nargin
case 2

c = a + b;
case 1

c = a + a;
otherwise

c = 0;
end

When you type help addme at the command line, the help text displays in
the Command Window:

addme Add two values together.
C = addme(A) adds A to itself.
C = addme(A,B) adds A and B together.

See also sum, plus.

The first help text line, often called the H1 line, typically includes the program
name and a brief description. The Current Folder browser and the help and
lookfor functions use the H1 line to display information about the program.

15-5

15 Function Basics

Create See also links by including function names at the end of your help
text on a line that begins with % See also. If the function exists on the
search path or in the current folder, the help command displays each of these
function names as a hyperlink to its help. Otherwise, help prints the function
names as they appear in the help text.

You can include hyperlinks (in the form of URLs) to Web sites in your help
text. Create hyperlinks by including an HTML <a> anchor element.
Within the anchor, use a matlab: statement to execute a web command.
For example:

% For more information, see <a href="matlab:
% web('http://www.mathworks.com')">the MathWorks Web site.

End your help text with a blank line (without a %). The help system ignores
any comment lines that appear after the help text block.

Note When multiple programs have the same name, the help command
determines which help text to display by applying the rules described in
“Function Precedence Order” on page 15-43. However, if a program has the
same name as a MathWorks function, the Help on Selection option in
context menus always displays documentation for the MathWorks function.

See Also help | lookfor

Related
Examples

• “Add Comments to Programs” on page 14-4
• “Create Help Summary Files (Contents.m)” on page 25-13
• “Check Which Programs Have Help” on page 25-10
• “Display Custom Documentation” on page 25-16

15-6

Run Functions in the Editor

Run Functions in the Editor
This example shows how to run a function that requires some initial setup,
such as input argument values, while working in the Editor.

1 Create a function in a program file named myfunction.m.

function y = myfunction(x)
y = x.^2 + x;

This function requires input x.

2 View the commands available for running the function by clicking Run on
the Editor tab. The command at the top of the list is the command that
the Editor uses by default when you click the Run icon.

3 Replace the text type code to run with an expression that allows you to
run the function.

y = myfunction(1:10)

You can enter multiple commands on the same line, such as

x = 1:10; y = myfunction(x)

For more complicated, multiline commands, create a separate script file,
and then run the script.

15-7

15 Function Basics

Note Run commands use the base workspace. Any variables that you
define in a run command can overwrite variables in the base workspace
that have the same name.

4 Run the function by clicking Run or a specific run command from the
drop-down list. For myfunction.m, and an input of 1:10, this result
appears in the Command Window:

y =
2 6 12 20 30 42 56 72 90 110

When you select a run command from the list, it becomes the default for
the Run button.

To edit or delete an existing run command, select the command, right-click,
and then select Edit or Delete.

15-8

Base and Function Workspaces

Base and Function Workspaces
This topic explains the differences between the base workspace and function
workspaces, including workspaces for local functions, nested functions, and
scripts.

The base workspace stores variables that you create at the command line.
This includes any variables that scripts create, assuming that you run the
script from the command line or from the Editor. Variables in the base
workspace exist until you clear them or end your MATLAB session.

Functions do not use the base workspace. Every function has its own function
workspace. Each function workspace is separate from the base workspace and
all other workspaces to protect the integrity of the data. Even local functions
in a common file have their own workspaces. Variables specific to a function
workspace are called local variables. Typically, local variables do not remain
in memory from one function call to the next.

When you call a script from a function, the script uses the function workspace.

Like local functions, nested functions have their own workspaces. However,
these workspaces are unique in two significant ways:

• Nested functions can access and modify variables in the workspaces of the
functions that contain them.

• All of the variables in nested functions or the functions that contain them
must be explicitly defined. That is, you cannot call a function or script
that assigns values to variables unless those variables already exist in the
function workspace.

Related
Examples

• “Share Data Between Workspaces” on page 15-10

Concepts • “Nested Functions” on page 15-32

15-9

15 Function Basics

Share Data Between Workspaces

In this section...

“Introduction” on page 15-10

“Best Practice: Passing Arguments” on page 15-10

“Nested Functions” on page 15-11

“Persistent Variables” on page 15-12

“Global Variables” on page 15-12

“Evaluating in Another Workspace” on page 15-13

Introduction
This topic shows how to share variables between workspaces or allow them to
persist between function executions.

In most cases, variables created within a function are local variables known
only within that function. Local variables are not available at the command
line or to any other function. However, there are several ways to share data
between functions or workspaces.

Best Practice: Passing Arguments
The most secure way to extend the scope of a function variable is to use
function input and output arguments, which allow you to pass values of
variables.

For example, create two functions, update1 and update2, that share and
modify an input value. update2 can be a local function in the file update1.m,
or can be a function in its own file, update2.m.

function y1 = update1(x1)
y1 = 1 + update2(x1);

function y2 = update2(x2)
y2 = 2 * x2;

15-10

Share Data Between Workspaces

Call the update1 function from the command line and assign to variable Y in
the base workspace:

X = [1,2,3];
Y = update1(X)

Y =
3 5 7

Nested Functions
A nested function has access to the workspaces of all functions in which it is
nested. So, for example, a nested function can use a variable (in this case, x)
that is defined in its parent function:

function primaryFx
x = 1;
nestedFx;

function nestedFx
x = x + 1;

end
end

When parent functions do not use a given variable, the variable remains
local to the nested function. For example, in this version of primaryFx, the
two nested functions have their own versions of x that cannot interact with
each other.

function primaryFx
nestedFx1;
nestedFx2;

function nestedFx1
x = 1;

end

function nestedFx2
x = 2;

end
end

15-11

15 Function Basics

For more information, see “Nested Functions” on page 15-32.

Persistent Variables
When you declare a variable within a function as persistent, the variable
retains its value from one function call to the next. Other local variables
retain their value only during the current execution of a function. Persistent
variables are equivalent to static variables in other programming languages.

Declare variables using the persistent keyword before you use them.
MATLAB initializes persistent variables to an empty matrix, [].

For example, define a function in a file named findSum.m that initializes a
sum to 0, and then adds to the value on each iteration.

function findSum(inputvalue)
persistent SUM_X

if isempty(SUM_X)
SUM_X = 0;

end
SUM_X = SUM_X + inputvalue;

When you call the function, the value of SUM_X persists between subsequent
executions.

These operations clear the persistent variables for a function:

• clear all

• clear functionname

• Editing the function file

To prevent clearing persistent variables, lock the function file using mlock.

Global Variables
Global variables are variables that you can access from functions or from
the command line. They have their own workspace, which is separate from
the base and function workspaces.

15-12

Share Data Between Workspaces

However, global variables carry notable risks. For example:

• Any function can access and update a global variable. Other functions that
use the variable might return unexpected results.

• If you unintentionally give a “new” global variable the same name as an
existing global variable, one function can overwrite the values expected by
another. This error is difficult to diagnose.

Use global variables sparingly, if at all.

If you use global variables, declare them using the global keyword before you
access them within any particular location (function or command line). For
example, create a function in a file called falling.m:

function h = falling(t)
global GRAVITY
h = 1/2*GRAVITY*t.^2;

Then, enter these commands at the prompt:

global GRAVITY
GRAVITY = 32;
y = falling((0:.1:5)');

The two global statements make the value assigned to GRAVITY at the
command prompt available inside the function. However, as a more robust
alternative, redefine the function to accept the value as an input:

function h = falling(t,gravity)
h = 1/2*gravity*t.^2;

Then, enter these commands at the prompt:

GRAVITY = 32;
y = falling((0:.1:5)',GRAVITY);

Evaluating in Another Workspace
The evalin and assignin functions allow you to evaluate commands or
variable names from strings and specify whether to use the current or base
workspace.

15-13

15 Function Basics

Like global variables, these functions carry risks of overwriting existing data.
Use them sparingly.

evalin and assignin are sometimes useful for callback functions in graphical
user interfaces to evaluate against the base workspace. For example, create a
list box of variable names from the base workspace:

function listBox
figure;
lb = uicontrol('Style','listbox','Position',[10 10 100 100],...

'Callback',@update_listBox);
update_listBox(lb)

function update_listBox(src,~)
vars = evalin('base','who');
set(src,'String',vars)

For other programming applications, consider argument passing and the
techniques described in “Alternatives to the eval Function” on page 2-69.

Concepts • “Base and Function Workspaces” on page 15-9

15-14

Check Variable Scope in Editor

Check Variable Scope in Editor

In this section...

“Use Automatic Function and Variable Highlighting” on page 15-15

“Example of Using Automatic Function and Variable Highlighting” on
page 15-16

Scoping issues can be the source of some coding problems. For instance, if you
are unaware that nested functions share a particular variable, the results of
running your code might not be as you expect. Similarly, mistakes in usage of
local, global, and persistent variables can cause unexpected results.

The Code Analyzer does not always indicate scoping issues because sharing
a variable across functions is not an error—it may be your intent. Use
MATLAB function and variable highlighting features to identify when and
where your code uses functions and variables. If you have an active Internet
connection, you can watch the Variable and Function Highlighting video for
an overview of the major features.

For conceptual information on nested functions and the various types of
MATLAB variables, see “Sharing Variables Between Parent and Nested
Functions” on page 15-33 and “Share Data Between Workspaces” on page
15-10.

Use Automatic Function and Variable Highlighting
By default, the Editor indicates functions, local variables, and variables with
shared scope in various shades of blue. Variables with shared scope include:
global variables, persistent variables, and variables within nested functions.
(For more information, see “Nested Functions” on page 15-11.)

To enable and disable highlighting or to change the colors, click
Preferences and select Colors > Programming tools.

By default, the Editor:

• Highlights all instances of a given function or local variable in sky blue
when you place the cursor within a function or variable name. For instance:

15-15

15 Function Basics

• Displays a variable with shared scope in teal blue, regardless of the cursor
location. For instance:

Example of Using Automatic Function and Variable
Highlighting
Consider the code for a function rowsum:

function rowTotals = rowsum
% Add the values in each row and
% store them in a new array

x = ones(2,10);
[n, m] = size(x);
rowTotals = zeros(1,n);
for i = 1:n

rowTotals(i) = addToSum;
end

function colsum = addToSum
colsum = 0;
thisrow = x(i,:);
for i = 1:m

colsum = colsum + thisrow(i);
end

end

end

When you run this code, instead of returning the sum of the values in each
row and displaying:

ans =

10 10

MATLAB displays:

15-16

Check Variable Scope in Editor

ans =

0 0 0 0 0 0 0 0 0 10

Examine the code by following these steps:

1 On the Home tab in the Environment section, click Preferences
and select Colors > Programming tools. Ensure that Automatically
highlight and Variables with shared scope are selected.

2 Copy the rowsum code into the Editor.

Notice the variable appears in teal blue, which indicates i is not a local
variable. Both the rowTotals function and the addToSum functions set
and use the variable i.

The variable n, at line 6 appears in black, indicating that it does not span
multiple functions.

3 Hover the mouse pointer over an instance of variable i.

A tooltip appears: The scope of variable ’i’ spans multiple functions.

4 Click the tooltip link for information about variables whose scope span
multiple functions.

15-17

15 Function Basics

5 Click an instance of i.

Every reference to i highlights in sky blue and markers appear in the
indicator bar on the right side of the Editor.

6 Hover over one of the indicator bar markers.

A tooltip appears and displays the name of the function or variable and the
line of code represented by the marker.

7 Click a marker to navigate to the line indicated in tooltip for that marker.

This is particularly useful when your file contains more code than you
can view at one time in the Editor.

Fix the code by changing the instance of i at line 15 to y.

You can see similar highlighting effects when you click on a function
reference. For instance, click on addToSum.

15-18

Types of Functions

Types of Functions

In this section...

“Local and Nested Functions in a File” on page 15-19

“Private Functions in a Subfolder” on page 15-20

“Anonymous Functions Without a File” on page 15-21

Local and Nested Functions in a File
Program files can contain multiple functions: the main function and any
combination of local or nested functions. Local and nested functions are
useful for dividing programs into smaller tasks, making it easier to read and
maintain your code.

Local functions are subroutines that are available to any other functions
within the same file. They can appear in the file in any order after the main
function in the file. Local functions are the most common way to break up
programmatic tasks.

For example, create a single program file named myfunction.m that contains a
main function, myfunction, and two local functions, squareMe and doubleMe:

function b = myfunction(a)
b = squareMe(a) + doubleMe(a);

end
function y = squareMe(x)

y = x.^2;
end
function y = doubleMe(x)

y = x.*2;
end

You can call the main function from the command line or another program
file, although the local functions are only available to myfunction:

myfunction(pi)

ans =
16.1528

15-19

15 Function Basics

Nested functions are completely contained within another function. The
primary difference between nested functions and local functions is that nested
functions can use variables defined in parent functions without explicitly
passing those variables as arguments.

Nested functions are useful when subroutines share data, such as GUI
applications that pass data between components. For example, create a
function that allows you to set a value between 0 and 1 using either a slider
or an editable text box. If you use nested functions for the callbacks, the
slider and text box can share the value and each other’s handles without
explicitly passing them:

function myslider
value = 0;
f = figure;
s = uicontrol(f,'Style','slider','Callback',@slider);
e = uicontrol(f,'Style','edit','Callback',@edittext,...

'Position',[100,20,100,20]);

function slider(obj,~)
value = get(obj,'Value');
set(e,'String',num2str(value));

end
function edittext(obj,~)

value = str2double(get(obj,'String'));
set(s,'Value',value);

end

end

For more information, see:

• “Local Functions” on page 15-30

• “Nested Functions” on page 15-32

Private Functions in a Subfolder
Like local or nested functions, private functions are accessible only to
functions in a specific location. However, private functions are not in the
same file as the functions that can call them. Instead, they are in a subfolder

15-20

Types of Functions

named private. Private functions are available only to functions in the folder
immediately above the private folder. Use private functions to separate code
into different files, or to share code between multiple, related functions.

For more information, see “Private Functions” on page 15-41.

Anonymous Functions Without a File
Anonymous functions allow you to define a function without creating a
program file, as long as the function consists of a single statement. A common
application of anonymous functions is to define a mathematical expression,
and then evaluate that expression over a range of values using a MATLAB
function function—a function that accepts a function handle as an input.

For example, this statement creates a function handle named s for an
anonymous function:

s = @(x) sin(1./x);

This function has a single input, x. The @ operator creates the function handle.

You can use the function handle to evaluate the function for particular values,
such as

y = s(pi)

y =
0.3130

Or, you can pass the function handle to a function that evaluates over a range
of values, such as fplot:

range = [0.01,0.1];
fplot(s,range)

15-21

15 Function Basics

For more information, see “Anonymous Functions” on page 15-23.

15-22

Anonymous Functions

Anonymous Functions

In this section...

“What Are Anonymous Functions?” on page 15-23

“Variables in the Expression” on page 15-24

“Multiple Anonymous Functions” on page 15-25

“Functions with No Inputs” on page 15-26

“Functions with Multiple Inputs or Outputs” on page 15-26

“Arrays of Anonymous Functions” on page 15-28

What Are Anonymous Functions?
An anonymous function is a function that is not stored in a program file, but is
associated with a variable whose data type is function_handle. Anonymous
functions can accept inputs and return outputs, just as standard functions do.
However, they can contain only a single executable statement.

For example, create a handle to an anonymous function that finds the square
of a number:

sqr = @(x) x.^2;

Variable sqr is a function handle. The @ operator creates the handle, and
the parentheses () immediately after the @ operator include the function
input arguments. This anonymous function accepts a single input x, and
implicitly returns a single output, an array the same size as x that contains
the squared values.

Find the square of a particular value (5) by passing the value to the function
handle, just as you would pass an input argument to a standard function.

a = sqr(5)

a =
25

15-23

15 Function Basics

Many MATLAB functions accept function handles as inputs so that you can
evaluate functions over a range of values. You can create handles either for
anonymous functions or for functions in program files. The benefit of using
anonymous functions is that you do not have to edit and maintain a file for a
function that requires only a brief definition.

For example, find the integral of the sqr function from 0 to 1 by passing the
function handle to the integral function:

q = integral(sqr,0,1);

You do not need to create a variable in the workspace to store an anonymous
function. Instead, you can create a temporary function handle within an
expression, such as this call to the integral function:

q = integral(@(x) x.^2,0,1);

Variables in the Expression
Function handles can store not only an expression, but also variables that the
expression requires for evaluation.

For example, create a function handle to an anonymous function that requires
coefficients a, b, and c.

a = 1.3;
b = .2;
c = 30;
parabola = @(x) a*x.^2 + b*x + c;

Because a, b, and c are available at the time you create parabola, the function
handle includes those values. The values persist within the function handle
even if you clear the variables:

clear a b c
x = 1;
y = parabola(x)

y =
31.5000

15-24

Anonymous Functions

To supply different values for the coefficients, you must create a new function
handle:

a = -3.9;
b = 52;
c = 0;
parabola = @(x) a*x.^2 + b*x + c;

x = 1;
y = parabola(1)

y =
48.1000

You can save function handles and their associated values in a MAT-file
and load them in a subsequent MATLAB session using the save and load
functions, such as

save myfile.mat parabola

Multiple Anonymous Functions
The expression in an anonymous function can include another anonymous
function. This is useful for passing different parameters to a function that you
are evaluating over a range of values. For example, you can solve the equation

for varying values of c by combining two anonymous functions:

g = @(c) (integral(@(x) (x.^2 + c*x + 1),0,1));

Here is how to derive this statement:

1 Write the integrand as an anonymous function,

@(x) (x.^2 + c*x + 1)

2 Evaluate the function from zero to one by passing the function handle to
integral,

15-25

15 Function Basics

integral(@(x) (x.^2 + c*x + 1),0,1)

3 Supply the value for c by constructing an anonymous function for the
entire equation,

g = @(c) (integral(@(x) (x.^2 + c*x + 1),0,1));

The final function allows you to solve the equation for any value of c. For
example:

g(2)

ans =
2.3333

Functions with No Inputs
If your function does not require any inputs, use empty parentheses when you
define and call the anonymous function. For example:

t = @() datestr(now);
d = t()

d =
26-Jan-2012 15:11:47

Omitting the parentheses in the assignment statement creates another
function handle, and does not execute the function:

d = t

d =
@() datestr(now)

Functions with Multiple Inputs or Outputs
Anonymous functions require that you explicitly specify the input arguments
as you would for a standard function, separating multiple inputs with
commas. For example, this function accepts two inputs, x and y:

myfunction = @(x,y) (x^2 + y^2 + x*y);

x = 1;

15-26

Anonymous Functions

y = 10;
z = myfunction(x,y)

z =
111

However, you do not explicitly define output arguments when you create
an anonymous function. If the expression in the function returns multiple
outputs, then you can request them when you call the function. Enclose
multiple output variables in square brackets.

For example, the ndgrid function can return as many outputs as the number
of input vectors. This anonymous function that calls ndgrid can also return
multiple outputs:

c = 10;
mygrid = @(x,y) ndgrid((-x:x/c:x),(-y:y/c:y));
[x,y] = mygrid(pi,2*pi);

You can use the output from mygrid to create a mesh or surface plot:

z = sin(x) + cos(y);
mesh(x,y,z)

15-27

15 Function Basics

Arrays of Anonymous Functions
Although most MATLAB fundamental data types support multidimensional
arrays, function handles must be scalars (single elements). However, you can
store multiple function handles using a cell array or structure array. The
most common approach is to use a cell array, such as

f = {@(x)x.^2;
@(y)y+10;
@(x,y)x.^2+y+10};

When you create the cell array, keep in mind that MATLAB interprets spaces
as column separators. Either omit spaces from expressions, as shown in the
previous code, or enclose expressions in parentheses, such as

f = {@(x) (x.^2);
@(y) (y + 10);
@(x,y) (x.^2 + y + 10)};

Access the contents of a cell using curly braces. For example, f{1} returns
the first function handle. To execute the function, pass input values in
parentheses after the curly braces:

15-28

Anonymous Functions

x = 1;
y = 10;

f{1}(x)
f{2}(y)
f{3}(x,y)

ans =
1

ans =
20

ans =
21

Concepts • “Creating a Function Handle” on page 9-3

15-29

15 Function Basics

Local Functions
This topic explains the term local function, and shows how to create and
use local functions.

MATLAB program files can contain code for more than one function. The first
function in the file (the main function) is visible to functions in other files, or
you can call it from the command line. Additional functions within the file
are called local functions. Local functions are only visible to other functions
in the same file. They are equivalent to subroutines in other programming
languages, and are sometimes called subfunctions.

Local functions can occur in any order, as long as the main function appears
first. Each function begins with its own function definition line.

For example, create a program file named mystats.m that contains a main
function, mystats, and two local functions, mymean and mymedian.

function [avg, med] = mystats(x)
n = length(x);
avg = mymean(x,n);
med = mymedian(x,n);
end

function a = mymean(v,n)
% MYMEAN Example of a local function.

a = sum(v)/n;
end

function m = mymedian(v,n)
% MYMEDIAN Another example of a local function.

w = sort(v);
if rem(n,2) == 1

m = w((n + 1)/2);
else

m = (w(n/2) + w(n/2 + 1))/2;
end
end

15-30

Local Functions

The local functions mymean and mymedian calculate the average and median of
the input list. The main function mystats determines the length of the list n
and passes it to the local functions.

Although you cannot call a local function from the command line or from
functions in other files, you can access its help using the help function.
Specify names of both the main function and the local function, separating
them with a > character:

help mystats>mymean

mymean Example of a local function.

Local functions in the current file have precedence over functions in other
files. That is, when you call a function within a program file, MATLAB
checks whether the function is a local function before looking for other main
functions. This allows you to create an alternate version of a particular
function while retaining the original in another file.

All functions, including local functions, have their own workspaces that are
separate from the base workspace. Local functions cannot access variables
used by other functions unless you pass them as arguments. In contrast,
nested functions (functions completely contained within another function) can
access variables used by the functions that contain them.

Concepts • “Nested Functions” on page 15-32
• “Function Precedence Order” on page 15-43

15-31

15 Function Basics

Nested Functions

In this section...

“What Are Nested Functions?” on page 15-32

“Requirements for Nested Functions” on page 15-33

“Sharing Variables Between Parent and Nested Functions” on page 15-33

“Using Handles to Store Function Parameters” on page 15-35

“Visibility of Nested Functions” on page 15-37

What Are Nested Functions?
A nested function is a function that is completely contained within a parent
function. Any function in a program file can include a nested function.

For example, this function named parent contains a nested function named
nestedfx:

function parent
disp('This is the parent function')
nestedfx

function nestedfx
disp('This is the nested function')

end

end

The primary difference between nested functions and other types of functions
is that they can access and modify variables that are defined in their parent
functions. As a result:

• Nested functions can use variables that are not explicitly passed as input
arguments.

• In a parent function, you can create a handle to a nested function that
contains the data necessary to run the nested function.

15-32

Nested Functions

Requirements for Nested Functions

• Typically, functions do not require an end statement. However, to nest
any function in a program file, all functions in that file must use an end
statement.

• You cannot define a nested function inside any of the MATLAB program
control statements, such as if/elseif/else, switch/case, for, while, or
try/catch.

• You must call a nested function either directly by name (without using
feval), or using a function handle that you created using the @ operator
(and not str2func).

• All of the variables in nested functions or the functions that contain them
must be explicitly defined. That is, you cannot call a function or script
that assigns values to variables unless those variables already exist in the
function workspace. (For more information, see “Variables in Nested and
Anonymous Functions” on page 15-39.)

Sharing Variables Between Parent and Nested
Functions
In general, variables in one function workspace are not available to other
functions. However, nested functions can access and modify variables in the
workspaces of the functions that contain them.

This means that both a nested function and a function that contains it can
modify the same variable without passing that variable as an argument. For
example, in each of these functions, main1 and main2, both the main function
and the nested function can access variable x:

15-33

15 Function Basics

function main1
x = 5;
nestfun1;

function nestfun1
x = x + 1;

end

end

function main2
nestfun2;

function nestfun2
x = 5;

end

x = x + 1;
end

When parent functions do not use a given variable, the variable remains
local to the nested function. For example, in this function named main, the
two nested functions have their own versions of x that cannot interact with
each other:

function main
nestedfun1;
nestedfun2;

function nestedfun1
x = 1;

end

function nestedfun2
x = 2;

end
end

Functions that return output arguments have variables for the outputs in
their workspace. However, parent functions only have variables for the output
of nested functions if they explicitly request them. For example, this function
parentfun does not have variable y in its workspace:

function parentfun
x = 5;
nestfun;

function y = nestfun
y = x + 1;

15-34

Nested Functions

end

end

If you modify the code as follows, variable z is in the workspace of parentfun:

function parentfun
x = 5;
z = nestfun;

function y = nestfun
y = x + 1;

end

end

Using Handles to Store Function Parameters
Nested functions can use variables from three sources:

• Input arguments

• Variables defined within the nested function

• Variables defined in a parent function, also called externally scoped
variables

When you create a function handle for a nested function, that handle stores
not only the name of the function, but also the values of externally scoped
variables.

For example, create a function in a file named makeParabola.m. This function
accepts several polynomial coefficients, and returns a handle to a nested
function that calculates the value of that polynomial.

function p = makeParabola(a,b,c)
p = @parabola;

function y = parabola(x)
y = a*x.^2 + b*x + c;
end

15-35

15 Function Basics

end

The makeParabola function returns a handle to the parabola function that
includes values for coefficients a, b, and c.

At the command line, call the makeParabola function with coefficient values
of 1.3, .2, and 30. Use the returned function handle p to evaluate the
polynomial at a particular point:

p = makeParabola(1.3,.2,30);

X = 25;
Y = p(X)

Y =
847.5000

Many MATLAB functions accept function handle inputs to evaluate functions
over a range of values. For example, plot the parabolic equation from -25 to
+25:

fplot(p,[-25,25])

15-36

Nested Functions

You can create multiple handles to the parabola function that each use
different polynomial coefficients:

firstp = makeParabola(0.8,1.6,32);
secondp = makeParabola(3,4,50);
range = [-25,25];

figure
hold on
fplot(firstp,range)
fplot(secondp,range,'r:')
hold off

Visibility of Nested Functions
Every function has a certain scope, that is, a set of other functions to which it
is visible. A nested function is available:

• From the level immediately above it. (In the following code, function A can
call B or D, but not C or E.)

15-37

15 Function Basics

• From a function nested at the same level within the same parent function.
(Function B can call D, and D can call B.)

• From a function at any lower level. (Function C can call B or D, but not E.)

function A(x, y) % Main function
B(x,y);
D(y);

function B(x,y) % Nested in A
C(x);
D(y);

function C(x) % Nested in B
D(x);
end

end

function D(x) % Nested in A
E(x);

function E(x) % Nested in D
disp(x)
end

end
end

The easiest way to extend the scope of a nested function is to create a function
handle and return it as an output argument, as shown in “Using Handles to
Store Function Parameters” on page 15-35. Only functions that can call a
nested function can create a handle to it.

Concepts • “Variables in Nested and Anonymous Functions” on page 15-39
• “Calling a Function Using Its Handle” on page 9-7
• “Argument Checking in Nested Functions” on page 16-11

15-38

Variables in Nested and Anonymous Functions

Variables in Nested and Anonymous Functions
The scoping rules for nested and anonymous functions require that all
variables used within the function be present in the text of the code.

If you attempt to dynamically add a variable to the workspace of an
anonymous function, a nested function, or a function that contains a nested
function, then MATLAB issues an error of the form

Attempt to add variable to a static workspace.

This table describes typical operations that attempt dynamic assignment, and
the recommended ways to avoid it.

Type of Operation
Best Practice to Avoid Dynamic
Assignment

load Specify the variable name as an input to
the load function. Or, assign the output
from the load function to a structure
array.

eval, evalin, or assignin If possible, avoid using these functions
altogether. See “Alternatives to the eval
Function” on page 2-69.

Calling a MATLAB script that
creates a variable

Convert the script to a function and
pass the variable using arguments. This
approach also clarifies the code.

Assigning to a variable in the
MATLAB debugger

Create a global variable for temporary
use in debugging, such as

K>> global X;
K>> X = myvalue;

Another way to avoid dynamic assignment is to explicitly declare the variable
within the function. For example, suppose a script named makeX.m assigns
a value to variable X. A function that calls makeX and explicitly declares X
avoids the dynamic assignment error because X is in the function workspace.
A common way to declare a variable is to initialize its value to an empty array:

15-39

15 Function Basics

function noerror
X = [];
nestedfx

function nestedfx
makeX

end
end

Concepts • “Base and Function Workspaces” on page 15-9

15-40

Private Functions

Private Functions
This topic explains the term private function, and shows how to create and
use private functions.

Private functions are useful when you want to limit the scope of a function.
You designate a function as private by storing it in a subfolder with the
name private. Then, the function is available only to functions in the folder
immediately above the private subfolder, or to scripts called by the functions
that reside in the parent folder.

For example, within a folder that is on the MATLAB search path, create
a subfolder named private. Do not add private to the path. Within the
private folder, create a function in a file named findme.m:

function findme
% FINDME An example of a private function.

disp('You found the private function.')

Change to the folder that contains the private folder and create a file named
visible.m.

function visible
findme

Change your current folder to any location and call the visible function.

visible

You found the private function.

Although you cannot call the private function from the command line or from
functions outside the parent of the private folder, you can access its help:

help private/findme

findme An example of a private function.

Private functions have precedence over standard functions, so MATLAB finds
a private function named test.m before a nonprivate program file named

15-41

15 Function Basics

test.m. This allows you to create an alternate version of a particular function
while retaining the original in another folder.

Concepts • “Function Precedence Order” on page 15-43

15-42

Function Precedence Order

Function Precedence Order
This topic explains how MATLAB determines which function to call when
multiple functions in the current scope have the same name. The current
scope includes the current file, an optional private subfolder relative to the
currently running function, the current folder, and the MATLAB path.

MATLAB uses this precedence order:

1 Variables

Before assuming that a name matches a function, MATLAB checks for a
variable with that name in the current workspace.

Note If you create a variable with the same name as a function, MATLAB
cannot run that function until you clear the variable from memory.

2 Imported package functions

A package function is associated with a particular folder. When you import
a package function using the import function, it has precedence over all
other functions with the same name.

3 Nested functions within the current function

4 Local functions within the current file

5 Private functions

Private functions are functions in a subfolder named private that is
immediately below the folder of the currently running file.

6 Object functions

An object function accepts a particular class of object in its input argument
list. When there are multiple object functions with the same name,
MATLAB checks the classes of the input arguments to determine which
function to use.

15-43

15 Function Basics

7 Class constructors in @ folders

MATLAB uses class constructors to create a variety of objects (such as
timeseries or audioplayer), and you can define your own classes using
object-oriented programming. For example, if you create a class folder
@polynom and a constructor function @polynom/polynom.m, the constructor
takes precedence over other functions named polynom.m anywhere on the
path.

8 Functions in the current folder

9 Functions elsewhere on the path, in order of appearance

When determining the precedence of functions within the same folder,
MATLAB considers the file type, in this order:

1 Built-in function

2 MEX-function

3 Simulink® model, with file types in this order:

a SLX file

b MDL file

4 P-file (that is, an encoded program file with a .p extension)

5 Program file with a .m extension

For example, if MATLAB finds a .m file and a P-file with the same name
in the same folder, it uses the P-file. Because P-files are not automatically
regenerated, make sure that you regenerate the P-file whenever you edit
the program file.

To determine the function MATLAB calls for a particular input, include the
function name and the input in a call to the which function. For example,
determine the location of the max function that MATLAB calls for double
and int8 values:

testval = 10;
which max(testval)

15-44

Function Precedence Order

built-in (matlabroot\toolbox\matlab\datafun\@double\max)
% double method

testval = int8(10);
which max(testval)

built-in (matlabroot\toolbox\matlab\datafun\@int8\max)
% int8 method

For more information, see:

• “Search Path Basics”

• Variables

• “Types of Functions” on page 15-19

• “Class Precedence and MATLAB Path”

15-45

15 Function Basics

15-46

16

Function Arguments

• “Find Number of Function Arguments” on page 16-2

• “Support Variable Number of Inputs” on page 16-4

• “Support Variable Number of Outputs” on page 16-6

• “Validate Number of Function Arguments” on page 16-8

• “Argument Checking in Nested Functions” on page 16-11

• “Ignore Function Inputs” on page 16-13

• “Check Function Inputs with validateattributes” on page 16-14

• “Parse Function Inputs” on page 16-17

• “Input Parser Validation Functions” on page 16-22

16 Function Arguments

Find Number of Function Arguments
This example shows how to determine how many input or output arguments
your function receives using nargin and nargout.

Input Arguments

Create a function in a file named addme.m that accepts up to two inputs.
Identify the number of inputs with nargin.

function c = addme(a,b)

switch nargin
case 2

c = a + b;
case 1

c = a + a;
otherwise

c = 0;
end

Call addme with one, two, or zero input arguments.

addme(42)

ans =
84

addme(2,4000)

ans =
4002

addme

ans =
0

Output Arguments

16-2

Find Number of Function Arguments

Create a new function in a file named addme2.m that can return one or two
outputs (a result and its absolute value). Identify the number of requested
outputs with nargout.

function [result,absResult] = addme2(a,b)

switch nargin
case 2

result = a + b;
case 1

result = a + a;
otherwise

result = 0;
end

if nargout > 1
absResult = abs(result);

end

Call addme2 with one or two output arguments.

value = addme2(11,-22)

value =
-11

[value,absValue] = addme2(11,-22)

value =
-11

absValue =
11

Functions return outputs in the order they are declared in the function
definition.

See Also nargin | narginchk | nargout | nargoutchk

16-3

16 Function Arguments

Support Variable Number of Inputs
This example shows how to define a function that accepts a variable number
of input arguments using varargin. The varargin argument is a cell array
that contains the function inputs, where each input is in its own cell.

Create a function in a file named plotWithTitle.m that accepts a variable
number of paired (x,y) inputs for the plot function and an optional title. If
the function receives an odd number of inputs, it assumes that the last input
is a title.

function plotWithTitle(varargin)
if rem(nargin,2) ~= 0

myTitle = varargin{nargin};
numPlotInputs = nargin - 1;

else
myTitle = 'Default Title';
numPlotInputs = nargin;

end

plot(varargin{1:numPlotInputs})
title(myTitle)

Because varargin is a cell array, you access the contents of each cell
using curly braces, {}. The syntax varargin{1:numPlotInputs} creates a
comma-separated list of inputs to the plot function.

Call plotWithTitle with two sets of (x,y) inputs and a title.

x = [1:.1:10]; y1 = sin(x); y2 = cos(x);
plotWithTitle(x,y1,x,y2,'Sine and Cosine')

You can use varargin alone in an input argument list, or at the end of the
list of inputs, such as

function myfunction(a,b,varargin)

In this case, varargin{1} corresponds to the third input passed to the
function, and nargin returns length(varargin) + 2.

See Also nargin | varargin

16-4

Support Variable Number of Inputs

Related
Examples

• “Access Data in a Cell Array” on page 8-5

Concepts • “Argument Checking in Nested Functions” on page 16-11
• “Comma-Separated Lists” on page 2-61

16-5

16 Function Arguments

Support Variable Number of Outputs
This example shows how to define a function that returns a variable number
of output arguments using varargout. Output varargout is a cell array that
contains the function outputs, where each output is in its own cell.

Create a function in a file named magicfill.m that assigns a magic square to
each requested output.

function varargout = magicfill
nOutputs = nargout;
varargout = cell(1,nOutputs);

for k = 1:nOutputs;
varargout{k} = magic(k);

end

Indexing with curly braces {} updates the contents of a cell.

Call magicfill and request three outputs.

[first,second,third] = magicfill

first =
1

second =
1 3
4 2

third =
8 1 6
3 5 7
4 9 2

MATLAB assigns values to the outputs according to their order in the
varargout array. For example, first == varargout{1}.

You can use varargout alone in an output argument list, or at the end of
the list of outputs, such as

16-6

Support Variable Number of Outputs

function [x,y,varargout] = myfunction(a,b)

In this case, varargout{1} corresponds to the third output that the function
returns, and nargout returns length(varargout) + 2.

See Also nargout | varargout

Related
Examples

• “Access Data in a Cell Array” on page 8-5

Concepts • “Argument Checking in Nested Functions” on page 16-11

16-7

16 Function Arguments

Validate Number of Function Arguments
This example shows how to check whether your custom function receives
a valid number of input or output arguments. MATLAB performs some
argument checks automatically. For other cases, you can use narginchk or
nargoutchk.

Automatic Argument Checks

MATLAB checks whether your function receives more arguments than
expected when it can determine the number from the function definition. For
example, this function accepts up to two outputs and three inputs:

function [x,y] = myFunction(a,b,c)

If you pass too many inputs to myFunction, MATLAB issues an error. You do
not need to call narginchk to check for this case.

[X,Y] = myFunction(1,2,3,4)

Error using myFunction
Too many input arguments.

Use the narginchk and nargoutchk functions to verify that your function
receives:

• A minimum number of required arguments.

• No more than a maximum number of arguments, when your function uses
varargin or varargout.

Input Checks with narginchk

Define a function in a file named testValues.m that requires at least two
inputs. The first input is a threshold value to compare against the other
inputs.

function testValues(threshold,varargin)
minInputs = 2;
maxInputs = Inf;
narginchk(minInputs,maxInputs)

16-8

Validate Number of Function Arguments

for k = 1:(nargin-1)
if (varargin{k} > threshold)

fprintf('Test value %d exceeds %d\n',k,threshold);
end

end

Call testValues with too few inputs.

testValues(10)

Error using testValues (line 4)
Not enough input arguments.

Call testValues with enough inputs.

testValues(10,1,11,111)

Test value 2 exceeds 10
Test value 3 exceeds 10

Output Checks with nargoutchk

Define a function in a file named mysize.m that returns the dimensions of
the input array in a vector (from the size function), and optionally returns
scalar values corresponding to the sizes of each dimension. Use nargoutchk
to verify that the number of requested individual sizes does not exceed the
number of available dimensions.

function [sizeVector,varargout] = mysize(x)
minOutputs = 0;
maxOutputs = ndims(x) + 1;
nargoutchk(minOutputs,maxOutputs)

sizeVector = size(x);

varargout = cell(1,nargout-1);
for k = 1:length(varargout)

varargout{k} = sizeVector(k);
end

Call mysize with a valid number of outputs.

16-9

16 Function Arguments

A = rand(3,4,2);
[fullsize,nrows,ncols,npages] = mysize(A)

fullsize =
3 4 2

nrows =
3

ncols =
4

npages =
2

Call mysize with too many outputs.

A = 1;
[fullsize,nrows,ncols,npages] = mysize(A)

Error using mysize (line 4)
Too many output arguments.

See Also narginchk | nargoutchk

Related
Examples

• “Support Variable Number of Inputs” on page 16-4
• “Support Variable Number of Outputs” on page 16-6

16-10

Argument Checking in Nested Functions

Argument Checking in Nested Functions
This topic explains special considerations for using varargin, varargout,
nargin, and nargout with nested functions.

varargin and varargout allow you to create functions that accept variable
numbers of input or output arguments. Although varargin and varargout
look like function names, they refer to variables, not functions. This is
significant because nested functions share the workspaces of the functions
that contain them.

If you do not use varargin or varargout in the declaration of a nested
function, then varargin or varargout within the nested function refers to
the arguments of an outer function.

For example, create a function in a file named showArgs.m that uses varargin
and has two nested functions, one that uses varargin and one that does not.

function showArgs(varargin)
nested1(3,4)
nested2(5,6,7)

function nested1(a,b)
disp('nested1: Contents of varargin{1}')
disp(varargin{1})

end

function nested2(varargin)
disp('nested2: Contents of varargin{1}')
disp(varargin{1})

end

end

Call the function and compare the contents of varargin{1} in the two nested
functions.

showArgs(0,1,2)

nested1: Contents of varargin{1}

16-11

16 Function Arguments

0

nested2: Contents of varargin{1}
5

On the other hand, nargin and nargout are functions. Within any function,
including nested functions, calls to nargin or nargout return the number of
arguments for that function. If a nested function requires the value of nargin
or nargout from an outer function, pass the value to the nested function.

For example, create a function in a file named showNumArgs.m that passes
the number of input arguments from the primary (parent) function to a
nested function.

function showNumArgs(varargin)

disp(['Number of inputs to showNumArgs: ',int2str(nargin)]);
nestedFx(nargin,2,3,4)

function nestedFx(n,varargin)
disp(['Number of inputs to nestedFx: ',int2str(nargin)]);
disp(['Number of inputs to its parent: ',int2str(n)]);

end

end

Call showNumArgs and compare the output of nargin in the parent and nested
functions.

showNumArgs(0,1)

Number of inputs to showNumArgs: 2
Number of inputs to nestedFx: 4
Number of inputs to its parent: 2

See Also nargin | nargout | varargin | varargout

16-12

Ignore Function Inputs

Ignore Function Inputs
This example shows how to ignore inputs in your function definition using
the tilde (~) operator.

Use this operator when your function must accept a predefined set of inputs,
but your function does not use all of the inputs. Common applications
include defining callback functions, as shown here, or deriving a class from
a superclass.

Define a callback for a push button in a file named colorButton.m that does
not use the eventdata input. Ignore the input with a tilde.

function colorButton

figure;

uicontrol('Style','pushbutton','String','Click me','Callback',@btnCallback)

function btnCallback(h,~)

set(h,'BackgroundColor',rand(3,1))

The function declaration for btnCallback is essentially the same as

function btnCallback(h,eventdata)

However, using the tilde prevents the addition of eventdata to the function
workspace and makes it clearer that the function does not use eventdata.

You can ignore any number of function inputs, in any position in the argument
list. Separate consecutive tildes with a comma, such as

myfunction(myinput,~,~)

16-13

16 Function Arguments

Check Function Inputs with validateattributes
This example shows how to verify that the inputs to your function conform to
a set of requirements using the validateattributes function.

validateattributes requires that you pass the variable to check and the
supported data types for that variable. Optionally, pass a set of attributes
that describe the valid dimensions or values.

Check Data Type and Other Attributes

Define a function in a file named checkme.m that accepts up to three inputs:
a, b, and c. Check whether:

• a is a two-dimensional array of positive double-precision values.

• b contains 100 numeric values in an array with 10 columns.

• c is a nonempty character string or cell array.

function checkme(a,b,c)

validateattributes(a,{'double'},{'positive','2d'})
validateattributes(b,{'numeric'},{'numel',100,'ncols',10})
validateattributes(c,{'char','cell'},{'nonempty'})

disp('All inputs are ok.')

The curly braces {} indicate that the set of data types and the set of additional
attributes are in cell arrays. Cell arrays allow you to store combinations of
text and numeric data, or text strings of different lengths, in a single variable.

Call checkme with valid inputs.

checkme(pi,rand(5,10,2),'text')

All inputs are ok.

The scalar value pi is two-dimensional because size(pi) = [1,1].

16-14

Check Function Inputs with validateattributes

Call checkme with invalid inputs. The validateattributes function issues
an error for the first input that fails validation, and checkme stops processing.

checkme(-4)

Error using checkme (line 3)
Expected input to be positive.

checkme(pi,rand(3,4,2))

Error using checkme (line 4)
Expected input to be an array with number of elements equal to 100.

checkme(pi,rand(5,10,2),struct)

Error using checkme (line 5)
Expected input to be one of these types:

char, cell

Instead its type was struct.

The default error messages use the generic term input to refer to the
argument that failed validation. When you use the default error message,
the only way to determine which input failed is to view the specified line of
code in checkme.

Add Input Name and Position to Errors

Define a function in a file named checkdetails.m that performs the same
validation as checkme, but adds details about the input name and position
to the error messages.

function checkdetails(a,b,c)

validateattributes(a,{'double'},{'positive','2d'},'','First',1)
validateattributes(b,{'numeric'},{'numel',100,'ncols',10},'','Second',2)
validateattributes(c,{'char'},{'nonempty'},'','Third',3)

disp('All inputs are ok.')

16-15

16 Function Arguments

The empty string '' for the fourth input to validateattributes is a
placeholder for an optional function name string. You do not need to specify
a function name because it already appears in the error message. Specify
the function name when you want to include it in the error identifier for
additional error handling.

Call checkdetails with invalid inputs.

checkdetails(-4)

Error using checkdetails (line 3)
Expected input number 1, First, to be positive.

checkdetails(pi,rand(3,4,2))

Error using checkdetails (line 4)
Expected input number 2, Second, to be an array with
number of elements equal to 100.

See Also validateattributes | validatestring

16-16

Parse Function Inputs

Parse Function Inputs
This example shows how to define required and optional inputs, assign
defaults to optional inputs, and validate all inputs to a custom function using
the Input Parser.

The Input Parser provides a consistent way to validate and assign defaults
to inputs, improving the robustness and maintainability of your code. To
validate the inputs, you can take advantage of existing MATLAB functions or
write your own validation routines.

Step 1. Define your function.

Create a function in a file named printPhoto.m. The printPhoto function
has one required input for the file name, and optional inputs for the finish
(glossy or matte), color space (RGB or CMYK), width, and height.

function printPhoto(filename,varargin)

In your function declaration statement, specify required inputs first. Use
varargin to support optional inputs.

Step 2. Create an InputParser object.

Within your function, call inputParser to create a parser object.

p = inputParser;

Step 3. Add inputs to the scheme.

Add inputs to the parsing scheme in your function using addRequired,
addOptional, or addParamValue. For optional inputs, specify default values.

For each input, you can specify a handle to a validation function that checks
the input and returns a scalar logical (true or false) or errors. The validation
function can be an existing MATLAB function (such as ischar or isnumeric)
or a function that you create (such as an anonymous function or a local
function).

16-17

16 Function Arguments

In the printPhoto function, filename is a required input. Define finish and
color as optional input strings, and width and height as optional parameter
value pairs.

defaultFinish = 'glossy';
validFinishes = {'glossy','matte'};
checkFinish = @(x) any(validatestring(x,validFinishes));

defaultColor = 'RGB';
validColors = {'RGB','CMYK'};
checkColor = @(x) any(validatestring(x,validColors));

defaultWidth = 6;
defaultHeight = 4;

addRequired(p,'filename',@ischar);
addOptional(p,'finish',defaultFinish,checkFinish);
addOptional(p,'color',defaultColor,checkColor);
addParamValue(p,'width',defaultWidth,@isnumeric);
addParamValue(p,'height',defaultHeight,@isnumeric);

Inputs that you add with addRequired or addOptional are positional
arguments. When you call a function with positional inputs, specify those
values in the order they are added to the parsing scheme.

Inputs added with addParamValue are not positional, so you can pass values
for height before or after values for width. However, parameter value inputs
require that you pass the input name ('height' or 'width') along with the
value of the input.

If your function accepts optional input strings and parameter name and value
pairs, specify validation functions for the optional input strings. Otherwise,
the Input Parser interprets the optional strings as parameter names. For
example, the checkFinish validation function ensures that printPhoto
interprets 'glossy' as a value for finish and not as an invalid parameter
name.

Step 4. Set properties to adjust parsing (optional).

16-18

Parse Function Inputs

By default, the Input Parser makes assumptions about case sensitivity,
function names, structure array inputs, and whether to allow additional
parameter names and values that are not in the scheme. Properties allow you
to explicitly define the behavior. Set properties using dot notation, similar to
assigning values to a structure array.

Allow printPhoto to accept additional parameter value inputs that do not
match the input scheme by setting the KeepUnmatched property of the Input
Parser.

p.KeepUnmatched = true;

If KeepUnmatched is false (default), the Input Parser issues an error when
inputs do not match the scheme.

Step 5. Parse the inputs.

Within your function, call the parse method. Pass the values of all of the
function inputs.

parse(p,filename,varargin{:});

Step 6. Use the inputs in your function.

Access parsed inputs using these properties of the inputParser object:

• Results — Structure array with names and values of all inputs in the
scheme.

• Unmatched— Structure array with parameter names and values that are
passed to the function, but are not in the scheme (when KeepUnmatched
is true).

• UsingDefaults — Cell array with names of optional inputs that are
assigned their default values because they are not passed to the function.

Within the printPhoto function, display the values for some of the inputs:

disp(['File name: ',p.Results.filename])
disp(['Finish: ', p.Results.finish])

if ~isempty(fieldnames(p.Unmatched))

16-19

16 Function Arguments

disp('Extra inputs:')
disp(p.Unmatched)

end
if ~isempty(p.UsingDefaults)

disp('Using defaults: ')
disp(p.UsingDefaults)

end

Step 7. Call your function.

The Input Parser expects to receive inputs as follows:

• Required inputs first, in the order they are added to the parsing scheme
with addRequired.

• Optional positional inputs in the order they are added to the scheme with
addOptional.

• Positional inputs before parameter name and value pair inputs.

• Parameter names and values in the form
Name1,Value1,...,NameN,ValueN.

Pass several combinations of inputs to printPhoto, some valid and some
invalid:

printPhoto('myfile.jpg')

File name: myfile.jpg
Finish: glossy
Using defaults:

'finish' 'color' 'width' 'height'

printPhoto(100)

Error using printPhoto (line 23)
Argument 'filename' failed validation ischar.

printPhoto('myfile.jpg','satin')

Error using printPhoto (line 23)
Argument 'finish' failed validation with error:
Expected input to match one of these strings:

16-20

Parse Function Inputs

glossy, matte

The input, 'satin', did not match any of the valid strings.

printPhoto('myfile.jpg','height',10,'width',8)

File name: myfile.jpg
Finish: glossy
Using defaults:

'finish' 'color'

To pass a value for the nth positional input, either specify values for the
previous (n – 1) inputs or pass the input as a parameter name and value pair.
For example, these function calls assign the same values to finish (default
'glossy') and color:

printPhoto('myfile.gif','glossy','CMYK'); % positional

printPhoto('myfile.gif','color','CMYK'); % name and value

See Also inputParser | varargin

Concepts • “Input Parser Validation Functions” on page 16-22

16-21

16 Function Arguments

Input Parser Validation Functions
This topic shows ways to define validation functions that you pass to the
Input Parser to check custom function inputs.

The Input Parser methods addRequired, addOptional, and addParamValue
each accept an optional handle to a validation function. Designate function
handles with an at (@) symbol.

Validation functions must accept a single input argument, and they must
either return a scalar logical value (true or false) or error. If the validation
function returns false, the Input Parser issues an error and your function
stops processing.

There are several ways to define validation functions:

• Use an existing MATLAB function such as ischar or isnumeric. For
example, check that a required input named num is numeric:

p = inputParser;
checknum = @isnumeric;
addRequired(p,'num',checknum);

parse(p,'text');

Argument 'num' failed validation isnumeric.

• Create an anonymous function. For example, check that input num is a
numeric scalar greater than zero:

p = inputParser;
checknum = @(x) isnumeric(x) && isscalar(x) && (x > 0);
addRequired(p,'num',checknum);

parse(p,rand(3));

Argument 'num' failed validation @(x)isnumeric(x)&&isscalar(x)&&(x>0).

• Define your own function, typically a local function in the same file as your
primary function. For example, in a file named usenum.m, define a local

16-22

Input Parser Validation Functions

function named checknum that issues custom error messages when the
input num to usenum is not a numeric scalar greater than zero:

function usenum(num)
p = inputParser;
addRequired(p,'num',@checknum);
parse(p,num);

function TF = checknum(x)
TF = false;
if ~isscalar(x)

error('Input is not scalar');
elseif ~isnumeric(x)

error('Input is not numeric');
elseif (x <= 0)

error('Input must be > 0');
else

TF = true;
end

Call the function with an invalid input:

usenum(-1)

Error using usenum (line 4)
Argument 'num' failed validation with error:
Input must be > 0

See Also inputParser | function_handle | is* | validateattributes

Related
Examples

• “Parse Function Inputs” on page 16-17

Concepts • “Anonymous Functions” on page 15-23

16-23

16 Function Arguments

16-24

17

Debugging MATLAB Code

17 Debugging MATLAB® Code

Debugging Process and Features

In this section...

“Ways to Debug MATLAB Files” on page 17-2

“Preparing for Debugging” on page 17-2

“Set Breakpoints” on page 17-5

“Run a File with Breakpoints” on page 17-8

“Step Through a File” on page 17-10

“Examine Values” on page 17-11

“Correct Problems and End Debugging” on page 17-17

“Conditional Breakpoints” on page 17-24

“Breakpoints in Anonymous Functions” on page 17-26

“Breakpoints in Methods That Overload Functions” on page 17-27

“Error Breakpoints” on page 17-28

Ways to Debug MATLAB Files
You can debug MATLAB files using the Editor, which is a graphical user
interface, as well as by using debugging functions from the Command
Window. You can use both methods interchangeably. These topics and the
example describe both methods.

Preparing for Debugging
Do the following to prepare for debugging:

1 Open the file — To use the Editor for debugging, open it with the file to run.

2 Save changes — If you are editing the file, save the changes before you
begin debugging. If you try to run a file with unsaved changes from within
the Editor, the file is automatically saved before it runs. If you run a file
with unsaved changes from the Command Window, MATLAB software
runs the saved version of the file. Therefore, you do not see the results
of your changes.

17-2

Debugging Process and Features

3 Add the files to a folder on the search path or put them in the current
folder. Be sure the file you run and any files it calls are in folders that are
on the search path. If all required files are in the same folder, you can
instead make that folder the current folder.

Debugging Example — The Collatz Problem
The debugging process and features are best described using an example. To
prepare to use the example, create two files, collatz.m and collatzplot.m,
that produce data for the Collatz problem.

For any given positive integer, n, the Collatz function produces a sequence of
numbers that always resolves to 1. If n is even, divide it by 2 to get the next
integer in the sequence. If n is odd, multiply it by 3 and add 1 to get the next
integer in the sequence. Repeat the steps until the next integer is 1. The
number of integers in the sequence varies, depending on the starting value, n.

The Collatz problem is to prove that the collatz function resolves to 1 for
all positive integers. The files for this example are useful for studying the
Collatz problem. The file collatz.m generates the sequence of integers for
any given n. The file collatzplot.m calculates the number of integers in the
sequence for all integers from 1 through m, and plots the results. The plot
shows patterns that you can study further.

Following are the results when n is 1, 2, or 3.

n Sequence Number of Integers
in the Sequence

1 1 1

2 2 1 2

3 3 10 5 16 8 4 2 1 8

Files for the Collatz Problem. Following are the two files you use for the
debugging example. To create these files on your system, open two new files.
Select and copy the following code from the Help browser and paste it into the
files. Save and name the files collatz.m and collatzplot.m. Save them to
your current folder or add the folder where you save them to the search path.
One of the files has an embedded error to illustrate the debugging features.

17-3

17 Debugging MATLAB® Code

Open the files by issuing the following commands, and then saving each file
to a local folder:

open(fullfile(matlabroot,'help','techdoc','matlab_env',...
'examples','collatz.m'))

open(fullfile(matlabroot,'help','techdoc','matlab_env',...
'examples','collatzplot.m'))

Trial Run for the Example. Open the file collatzplot.m. Make sure that
the current folder is the folder in which you saved collatzplot.

Try out collatzplot to see if it works correctly. Use a simple input value,
for example, 3, and compare the results to those shown in the preceding
table. Typing

collatzplot(3)

produces the plot shown in the following figure.

17-4

Debugging Process and Features

The plot for n = 1 appears to be correct—for 1, the Collatz series is 1, and
contains one integer. But for n = 2 and n = 3, it is wrong. There should be only
one value plotted for each integer, the number of integers in the sequence,
which the preceding table shows to be 2 (for n = 2) and 8 (for n = 3). Instead,
multiple values are plotted. Use MATLAB debugging features to isolate the
problem.

Set Breakpoints
Set breakpoints to pause execution of the MATLAB file so you can examine
values where you think the problem can be. You can set breakpoints using
the Editor, using functions in the Command Window, or both.

17-5

17 Debugging MATLAB® Code

There are three basic types of breakpoints you can set in MATLAB files:

• A standard breakpoint, which stops at a specified line in a file. For details,
see “Set Standard Breakpoints” on page 17-7.

• A conditional breakpoint, which stops at a specified line in a file only
under specified conditions. For details, see “Conditional Breakpoints” on
page 17-24.

• An error breakpoint that stops in any file when it produces the specified
type of warning, error, or NaN or infinite value. For details, see “Error
Breakpoints” on page 17-28.

You can disable standard and conditional breakpoints so that MATLAB
temporarily ignores them, or you can remove them. For details, see “Disable
and Clear Breakpoints” on page 17-18. Breakpoints do not persist after you
exit the MATLAB session.

You can only set valid standard and conditional breakpoints at executable
lines in saved files that are in the current folder or in folders on the search
path. When you add or remove a breakpoint in a file that is not in a folder
on the search path or in the current folder, a dialog box appears. This dialog
box presents options that allow you to add or remove the breakpoint. You can
either change the current folder to the folder containing the file, or you can
add the folder containing the file to the search path.

Do not set a breakpoint at a for statement if you want to examine values at
increments in the loop. For example, in

for n = 1:10
m = n+1;

end

MATLAB executes the for statement only once, which is efficient. Therefore,
when you set a breakpoint at the for statement and step through the file, you
only stop at the for statement once. Instead place the breakpoint at the next
line, m=n+1 to stop at each pass through the loop.

You cannot set breakpoints while MATLAB is busy, for example, running a
file, unless that file is paused at a breakpoint.

17-6

Debugging Process and Features

Set Standard Breakpoints
To set a standard breakpoint using the Editor:

1 If you have changed the file, save it.

2 Either:

• Click in the breakpoint alley at an executable line where you want to set
the breakpoint. The breakpoint alley is the narrow column on the left
side of the Editor, to the right of the line number.

• Position the cursor in an executable line. On the Editor tab, in the
Breakpoints section, click Breakpoints, and then select Set/Clear.

Executable lines are preceded by a - (dash). If you attempt to set
breakpoints at lines that are not executable, such as comments or blank
lines, MATLAB sets it at the next executable line.

Set Breakpoints for the Example. It is unclear whether the problem in
the example is in collatzplot or collatz. To start, follow these steps:

1 In collatzplot.m, click the dash in the breakpoint alley at line 9 to set a
breakpoint.

This breakpoint enables you to step into collatz to see if the problem
is there.

2 Set additional breakpoints at lines 10 and 11.

These breakpoints stop the program so you can examine the interim results.

17-7

17 Debugging MATLAB® Code

Valid (Red) and Invalid (Gray) Breakpoints. Red breakpoints indicate
valid standard breakpoints.

Breakpoints are gray for either of these reasons:

• There are unsaved changes in the file. Save the file to make breakpoints
valid. The gray breakpoints become red, indicating they are now valid. Any
gray breakpoints that you entered at invalid breakpoint lines automatically
move to the next valid breakpoint line with a successful file save.

• There is a syntax error in the file. When you set a breakpoint, an error
message appears indicating where the syntax error is. Fix the syntax error
and save the file to make breakpoints valid.

Function Alternative for Setting Breakpoints
To set a breakpoint using the debugging functions, use dbstop. For the
example, type:

dbstop in collatzplot at 9
dbstop in collatzplot at 10
dbstop in collatzplot at 11

Run a File with Breakpoints
After setting breakpoints, run the file from the Command Window or the
Editor.

17-8

Debugging Process and Features

Run the Example
For the example, run collatzplot for the simple input value, 3, by typing the
following in the Command Window:

collatzplot(3)

The example, collatzplot, requires an input argument and therefore runs
only from the Command Window or from the input value(s) specified on the
Run drop-down list on the Editor tab.

Results of Running a File Containing Breakpoints
Running the file results in the following:

• The prompt in the Command Window changes to

K>>

indicating that MATLAB is in debug mode.

• The program pauses at the first breakpoint. This means that line will be
executed when you continue. The pause is indicated in the Editor by the
green arrow just to the right of the breakpoint. In the example, the pause
is at line 9 of collatzplot, as shown here:

The line at which you are paused displays in the Command Window. For
the example:

• The function the Function Call Stack field displays on the Editor tab
changes to reflect the current function (sometimes referred to as the caller
or calling workspace). The call stack includes local functions as well
as called functions. If you use debugging functions from the Command
Window, use dbstack to view the current call stack.

• If the file you are running is not in the current folder or a folder on the
search path, you are prompted to either add the folder to the path or
change the current folder.

17-9

17 Debugging MATLAB® Code

In debug mode, you can set breakpoints, step through programs, examine
variables, and run other functions.

MATLAB software could become nonresponsive if it stops at a breakpoint
while displaying a modal dialog box or figure that your file creates. In that
event, press Ctrl+C to go to the MATLAB prompt.

Step Through a File
While debugging, you can step through a MATLAB file, pausing at points
where you want to examine values.

Use any of the following methods:

• Click Step, Step In, Step Out in Editor tab.

• Use the dbstep or dbcont function

Details about these debugging buttons appear in the following table.

Toolbar Button Debug Menu
Item

Description Function
Alternative

Run to Cursor Continue execution of file until
the line where the cursor is
positioned. Also available on the
context menu.

None

Step Execute the current line of the
file.

dbstep

Step In Execute the current line of the
file and, if the line is a call to
another function, step into that
function.

dbstep in

Continue Resume execution of file until
completion or until another
breakpoint is encountered.

dbcont

17-10

Debugging Process and Features

Toolbar Button Debug Menu
Item

Description Function
Alternative

Step Out After stepping in, run the
rest of the called function or
local function, leave the called
function, and pause.

dbstep out

Quit
Debugging

Exit debug mode. dbquit out

Continue Running in the Example
In the example, collatzplot is paused at line 9. Because the problem results
are correct for N/n = 1, continue running until N/n = 2. Click Continue
three times to move through the breakpoints at lines 9, 10, and 11. Now the
program is again paused at the breakpoint at line 9.

Step into the Called Function in the Example
Now that collatzplot is paused at line 9 during the second iteration, click
Step In or type dbstep in in the Command Window to step into collatz

and walk through that file. Stepping into line 9 of collatzplot goes to line
9 of collatz. If collatz is not open in the Editor, it automatically opens if
you have selected Automatically open files when MATLAB reaches a
breakpoint in the Preference dialog box.

The pause indicator at line 9 of collatzplot changes to a hollow arrow ,
indicating that MATLAB control is now in a local function called from the
main program. The call stack shows that the current function is now collatz.

In the called function, collatz in the example, you can do the same things
you can do in the main (calling) function—set breakpoints, run, step through,
and examine values.

Examine Values
While the program is paused, you can view the value of any variable currently
in the workspace. Examine values when you want to see whether a line of
code has produced the expected result or not. If the result is as expected,

17-11

17 Debugging MATLAB® Code

continue running or step to the next line. If the result is not as you expect,
then that line, or a previous line, contains an error. Use the following methods
to examine values:

• “Select the Workspace” on page 17-12

• “View Values as Data Tips in the Editor” on page 17-13

• “View Values in the Command Window” on page 17-13

• “View Values in the Workspace Browser and Variable Editor” on page 17-14

• “Evaluate a Selection” on page 17-15

• “Examine Values in the Example” on page 17-15

• “Problems Viewing Variable Values from the Parent Workspace” on page
17-16

Many of these methods are used in “Examine Values in the Example” on
page 17-15.

Select the Workspace
Variables assigned through the Command Window and created using scripts
are considered to be in the base workspace. Variables created in a function
belong to their own function workspace. To examine a variable, you must first
select its workspace. When you run a program, the current workspace is
shown in the Function Call Stack field. To examine values that are part of
another workspace for a currently running function or for the base workspace,
first select that workspace from the list in the Function Call Stack field.

If you use debugging functions from the Command Window:

• To display the call stack, use dbstack.

• To change to a different workspace, use dbup and dbdown.

• To list the variables in the current workspace, use who or whos.

Workspace in the Example. At line 9 of collatzplot, you stepped in, and
the current line is 9 in collatz. The Function Call Stack field shows that
collatz is the current workspace.

17-12

Debugging Process and Features

View Values as Data Tips in the Editor
To view the current value of a variable in the Editor, first enable datatips,
then use the mouse to display a datatip:

1 On the Home tab, in the Environment section, click Preferences,
and select Editor/Debugger > Display.

2 Select Enable datatips in edit mode under General display options.

3 In the Editor, position the mouse pointer to the left of a variable.

The variable’s current value appears in a data tip. The data tip stays in
view until you move the pointer. If you have trouble getting the data tip
to appear, click in the line containing the variable, and then move the
pointer next to the variable.

View Values in the Command Window
You can examine values while in debug mode at the K>> prompt. To see the
variables currently in the workspace, use who. Type a variable name in the
Command Window and it displays the variable’s current value. For the
example, to see the value of n, type

n

The Command Window displays the expected result

n =

17-13

17 Debugging MATLAB® Code

2

and displays the debug prompt, K>>.

View Values in the Workspace Browser and Variable Editor
You can view the value of variables in the Value column of the Workspace
browser. The Workspace browser displays all variables in the current
workspace. To change to another workspace and view its variables, use
Function Call Stack drop-down list on the Editor tab, in theDebug section.

The Value column does not show all details for all variables. To see details,
double-click a variable in the Workspace browser. The Variable Editor opens,
displaying the content for that variable. You can open the Variable Editor
directly for a variable using openvar.

To see the value of n in the Variable Editor for the example, type

openvar n

and the Variable Editor opens, showing that n = 1 as expected.

17-14

Debugging Process and Features

Evaluate a Selection
Select a variable or equation in a MATLAB file in the Editor. Right-click
and select Evaluate Selection from the context menu (for a single-button
mouse, press Ctrl+click). The Command Window displays the value of the
variable or equation. You cannot evaluate a selection while MATLAB is busy,
for example, running a file.

Examine Values in the Example
Step from line 9 through line 13 in collatz. Step again, and the pause
indicator jumps to line 17, just after the if loop, as expected. Step again, to
line 18, check the value of sequence in line 17 and see that the array is

2 1

as expected for n = 2. Step again, which moves the pause indicator from line
18 to line 11. At line 11, step again. Because next_value is now 1, the while
loop ends. The pause indicator is at line 11 and appears as a green down
arrow . This indicates that processing in the called function is complete and
program control will return to the calling program. Step again from line 11 in
collatz and execution is now paused at line 9 in collatzplot.

Note that instead of stepping through collatz, the called function, as was
just done in this example, you can step out from a called function back to the
calling function, which automatically runs the rest of the called function and

17-15

17 Debugging MATLAB® Code

returns to the next line in the calling function. To step out, use the Step Out
button or type dbstep out in the Command Window.

In collatzplot, step again to advance to line 10, and then to line 11. The
variable seq_length in line 10 is a vector with the elements:

1 2

which is correct.

Finally, step again to advance to line 12. Examining the values in line 11, N =
2 as expected, but the second variable, plot_seq, has two values, where only
one value is expected. While the value for plot_seq is as expected:

2 1

it is the incorrect variable for plotting. Instead, seq_length(N) should be
plotted.

Problems Viewing Variable Values from the Parent Workspace
Sometimes, if you set a breakpoint in a function, and then attempt to view
the value of a variable in the parent workspace using the dbup command, the
value of the variable is currently under construction. Therefore, the value is
not available. This is true whether you view the value by specifying the dbup
command in the Command Window or by using the Function Call Stack
field on the Editor tab.

In such cases, MATLAB returns the following message, where x is the
variable for which you are trying to examine the value:

K>> x
Reference to a called function result under construction x.

For example, suppose you have code such as the following:

x = collatz(x);

MATLAB detects that the evaluation of collatz(x) replaces the input
variable, x. To optimize memory use, MATLAB overwrites the memory that
x currently occupies to hold a new value for x. When you request the value

17-16

Debugging Process and Features

of x, and it is under construction, its value is not available, and MATLAB
displays the error message.

Correct Problems and End Debugging
The following are some of the ways to correct problems and end the debugging
session:

• “Change Values and Check Results” on page 17-17

• “End Debugging” on page 17-17

• “Disable and Clear Breakpoints” on page 17-18

• “Save Breakpoints” on page 17-20

• “Correct Problems in a MATLAB File” on page 17-20

• “Complete the Example” on page 17-21

• “Run Parts in MATLAB Files That Have Unsaved Changes” on page 17-23

“Complete the Example” on page 17-21 uses many of these features.

Change Values and Check Results
While debugging, you can change the value of a variable in the current
workspace to see if the new value produces expected results. While the
program is paused, assign a new value to the variable in the Command
Window, Workspace browser, or Variable Editor. Then continue running or
stepping through the program. If the new value does not produce the expected
results, the program has a different problem.

End Debugging
After identifying a problem, end the debugging session. You must end a
debugging session if you want to change and save a file to correct a problem,
or if you want to run other functions in MATLAB.

17-17

17 Debugging MATLAB® Code

Note Quit debug mode before editing a file. If you edit a file while in debug
mode, you can get unexpected results when you run the file. If you do edit
a file while in debug mode, breakpoints turn gray, indicating that results
might not be reliable. See “Valid (Red) and Invalid (Gray) Breakpoints” on
page 17-8 for details.

If you attempt to save an edited file while in debug mode, a dialog box opens
allowing you to exit debug mode and save the file.

To end debugging, click Quit Debugging, or use the function dbquit.

After quitting debugging, pause indicators in the Editor display no longer
appear, and the normal prompt >> appears in the Command Window instead
of the debugging prompt, K>>. You can no longer access the call stack.

Disable and Clear Breakpoints
Disable a breakpoint to ignore it temporarily. Clear a breakpoint to remove it.

Disable and Enable Breakpoints. You can disable selected breakpoints so
the program temporarily ignores them and runs uninterrupted, for example,
after you think you identified and corrected a problem. This is especially
useful for conditional breakpoints—see “Conditional Breakpoints” on page
17-24.

To disable a breakpoint, do one of the following:

• Right-click the breakpoint icon, and select Disable Breakpoint from the
context menu.

• Place your cursor anywhere in a breakpoint line. Click Breakpoints,
and selectEnable/Disable from the drop-down list.

To disable a conditional breakpoint, use either of the methods in the preceding
list. An X appears through the breakpoint icon as shown here.

17-18

Debugging Process and Features

When you run dbstatus, the resulting message for a disabled breakpoint is

Breakpoint on line 9 has conditional expression 'false'.

After disabling a breakpoint, you can re-enable it to make it active again or
you can clear it.

To re-enable a breakpoint, do either of the following:

• Right-click the breakpoint icon and select Enable Breakpoint from the
context menu.

• Place your cursor anywhere in a breakpoint line. Click Breakpoints,
and selectEnable/Disable from the drop-down list.

The X no longer appears on the breakpoint icon and program execution will
pause at that line.

Clear (Remove) Breakpoints. All breakpoints remain in a file until
you clear (remove) them or until they are cleared automatically. Clear a
breakpoint after determining that a line of code is not causing a problem.

To clear a breakpoint in the Editor:

• Right-click the breakpoint icon and select Clear Breakpoint from the
context menu.

• Place your cursor anywhere in a breakpoint line. Click Breakpoints,
and selectSet/Clear from the drop-down list.

• Use the dbclear in file at lineno command in the Command Window.
For the example, clear the breakpoint at line 9 in collatzplot by typing:

dbclear in collatzplot at 9

17-19

17 Debugging MATLAB® Code

To clear all breakpoints in all files:

• Place your cursor anywhere in a breakpoint line. Click Breakpoints,
and selectClear All from the drop-down list.

• Use dbclear all in the Command Window.

For the example, clear all of the breakpoints in collatzplot by typing:

dbclear all in collatzplot

Breakpoints clear automatically when you:

• End the MATLAB session.

• Clear the file using clear name or clear all.

Note When clear name or clear all is in a statement in a file that you are
debugging, it clears the breakpoints.

Save Breakpoints
You can use the s=dbstatus syntax and then save s to save the current
breakpoints to a MAT-file. At a later time, you can load s and restore the
breakpoints using dbstop(s). For more information, including an example,
see the dbstatus reference page.

Correct Problems in a MATLAB File
To correct a problem in a MATLAB file:

1 Quit debugging.

Do not modify a file while MATLAB is in debug mode. If you do, breakpoints
turn gray, indicating that results might not be reliable. See “Valid (Red) and
Invalid (Gray) Breakpoints” on page 17-8 for details.

2 Modify the file.

3 Save the file.

17-20

Debugging Process and Features

4 Set, disable, or clear breakpoints, as appropriate.

5 Run the file again to be sure that it produces the expected results.

Complete the Example
To correct the problem in the example:

1 End the debugging session. One way to do this is to click Quit Debugging

2 In collatzplot.m line 11, change the string plot_seq to seq_length(N)
and save the file.

3 Clear the breakpoints in collatzplot.m. One way to do this is by typing

dbclear all in collatzplot

in the Command Window.

4 Run collatzplot for m = 3 by typing

collatzplot(3)

in the Command Window.

5 Verify the result. The figure shows that the length of the Collatz series is 1
when n = 1, 2 when n = 2, and 8 when n = 3, as expected.

17-21

17 Debugging MATLAB® Code

6 Test the function for a slightly larger value of m, such as 6, to be sure that the
results are still accurate. To make it easier to verify collatzplot for m = 6
as well as the results for collatz, add this line at the end of collatz.m

sequence

which displays the series in the Command Window. The results for when
n = 6 are

sequence =

6 3 10 5 16 8 4 2 1

Then run collatzplot for m = 6 by typing

collatzplot(6)

7 To make debugging easier, you ran collatzplot for a small value of m. Now
that you know it works correctly, run collatzplot for a larger value to
produce more interesting results. Before doing so, you consider disabling

17-22

Debugging Process and Features

output for the line you just added in step 6, line 19 of collatz.m, by adding
a semicolon to the end of the line so it appears as

sequence;

Then run

collatzplot(500)

The following figure shows the lengths of the Collatz series for n = 1 through
n = 500.

Run Parts in MATLAB Files That Have Unsaved Changes
It is a good practice to modify a MATLAB file after you quit debugging,
and then save the modification and run the file. Otherwise, you might
get unexpected results. However, there are situations where you want to
experiment during debugging. Perhaps you want to modify a part of the file
that has not yet run, and then run the remainder of the file without saving
the change. Follow these steps:

1 While stopped at a breakpoint, modify a part of the file that has not yet run.

17-23

17 Debugging MATLAB® Code

Breakpoints turn gray, indicating they are invalid.

2 Select all of the code after the breakpoint, right-click, and then select
Evaluate Selection from the context menu.

You can also use code sections to do this.

Conditional Breakpoints
Set conditional breakpoints to cause MATLAB to stop at a specified line in a
file only when the specified condition is met. One particularly good use for
conditional breakpoints is when you want to examine results after a certain
number of iterations in a loop. For example, set a breakpoint at line 10 in
collatzplot, specifying that MATLAB stop only if N is greater than or equal
to 2. This section covers the following topics:

• “Set Conditional Breakpoints” on page 17-24

• “Modify, Disable, or Clear Conditional Breakpoints” on page 17-25

• “Function Alternatives for Manipulating Conditional Breakpoints” on
page 17-25

Set Conditional Breakpoints
To set a conditional breakpoint:

1 Click in the line where you want to set the conditional breakpoint.

2 Click Breakpoints on the Editor tab, and select Set Condition. If a
standard breakpoint exists at that line, use this same method to make it
conditional.

The MATLAB Editor conditional breakpoint dialog box opens.

3 Type a condition in the dialog box, where a condition is any valid MATLAB
expression that returns a logical scalar value. Click OK. As noted in the
dialog box, the condition is evaluated before running the line. For the
example, at line 9 in collatzplot, enter the following as the condition:

N>=2

17-24

Debugging Process and Features

A yellow breakpoint icon (indicating the breakpoint is conditional) appears
in the breakpoint alley at that line.

When you run the file, MATLAB software enters debug mode and pauses
at the line only when the condition is met. In the collatzplot example,
MATLAB runs through the for loop once and pauses on the second iteration
at line 9 when N is 2. If you continue executing, MATLAB pauses again at line
9 on the third iteration when N is 3.

Modify, Disable, or Clear Conditional Breakpoints
The following table describes how to adjust conditional breakpoints.

To Do This

Modify a condition for a
breakpoint in the current
line.

Right-click the conditional breakpoint icon,
and then from the context menu, select
Set/Modify Condition.

Disable a conditional
breakpoint.

Click the associated conditional breakpoint
icon.

Clear a conditional
breakpoint.

Double-click the associated conditional
breakpoint icon.

Function Alternatives for Manipulating Conditional Breakpoints
The following table lists the functions available for adjusting conditional
breakpoints from the Command Window.

To Use This Function

Set a conditional breakpoint. dbstop

Clear a conditional breakpoint. dbclear

View a list of currently set breakpoints,
including the conditional expression
for each conditional breakpoint.

dbstatus

17-25

17 Debugging MATLAB® Code

Breakpoints in Anonymous Functions
You can set multiple breakpoints in a line of MATLAB code that contains
anonymous functions. You can do both of the following:

• Set a breakpoint for the line itself (MATLAB software pauses at the start
of the line).

• Set a breakpoint for each anonymous function in that line.

When you add a breakpoint to a line containing an anonymous function, the
Editor asks where in the line you want to add the breakpoint. If there is more
than one breakpoint in a line, the breakpoint icon is blue, regardless of the
status of any of the breakpoints on the line.

To display information in a tooltip about all breakpoints on a line, position
the pointer on the blue icon.

To perform a breakpoint action for a line that can contain multiple
breakpoints, such as Clear Breakpoint, right-click the breakpoint alley at
that line, and then select the action.

When you set a breakpoint in an anonymous function, MATLAB pauses when
the anonymous function is called.

The following illustration shows the Editor when you set a breakpoint in the
anonymous function sqr in line 2, and then run the file. When you run the
file, MATLAB pauses each time that the anonymous function sqr executes.
The green arrow shows where the code defines sqr. The white arrow, on line
5, indicates where the code calls sqr.

17-26

Debugging Process and Features

Breakpoints in Methods That Overload Functions
MATLAB functions often call other MATLAB functions and methods to
perform their operations. If you set a breakpoint in a class method, and then
run a MATLAB function that results in calling that method, execution stops
at the breakpoint. This behavior can be confusing if you are unaware that the
MATLAB function calls the method containing the breakpoint.

For instance, suppose you do the following:

1 Define a class named MyClass that overloads the MATLAB size function.

2 Create an instance of MyClass.

3 Insert breakpoints within the MyClass size method.

4 Call whos.

When you call the whos function, it calls the size function to obtain size
information about the variables in the workspace. Under the preceding
circumstances, because MyClass overloads the size function, whos calls the
MyClass size method instead of the default size function to determine
the size of the MyClass object. Execution stops at the breakpoint you set
in the size method. You can enable the MATLAB function to execute to
completion by either stepping or continuing through the method. To prevent
this behavior from recurring, remove the breakpoints.

17-27

17 Debugging MATLAB® Code

Error Breakpoints
Set error breakpoints to stop program execution and enter debug mode
when MATLAB encounters a problem. Unlike standard and conditional
breakpoints, you do not set these breakpoints at a specific line in a specific
file. Rather, once set, MATLAB stops at any line in any file when the error
condition specified by using the error breakpoint occurs. MATLAB then
enters debug mode and opens the file containing the error, with the pause
indicator at the line containing the error. Files open only when you select
Automatically open file when MATLAB reaches a breakpoint under
Editor/Debugger in the Preferences dialog box. Error breakpoints remain
in effect until you clear them or until you end the MATLAB session. This
section covers the following topics:

• “Set and Clear Error Breakpoints” on page 17-28

• “Error Breakpoint Types and Options” on page 17-29

• “Examples of Setting Warning and Error Breakpoints” on page 17-30

• “Function Alternative for Manipulating Error Breakpoints” on page 17-32

Set and Clear Error Breakpoints
To set error breakpoints:

1 On the Editor tab, in the Breakpoints section, click Breakpoints.

2 Select:

• Stop on Errors to stop on all errors.

• Stop on Warnings to stop on all warnings.

• More Error and Warning Handling Options for additional options.
This opens the Stop if Errors/Warnings for All Files dialog box

17-28

Debugging Process and Features

To clear error breakpoints, select the Never stop if ... option for all
appropriate tabs, and then click OK.

Error Breakpoint Types and Options
As the tabs in the Stop if Errors/Warnings for All Files dialog box suggest,
there are four basic types of error breakpoints you can set:

• Errors

When an error occurs, execution stops, unless the error is in a try...catch
block. MATLAB enters debug mode and opens the file to the line in the try
portion of the block that produced the error. You cannot resume execution.

• Try/Catch Errors

When an error occurs in a try...catch block, execution pauses. MATLAB
enters debug mode and opens the file to the line that produced the error.
You can resume execution or use debugging features.

17-29

17 Debugging MATLAB® Code

• Warnings

When a warning occurs, MATLAB pauses, enters debug mode, and opens
the file, paused at the line that produced the warning. You can resume
execution or use debugging features.

• NaN or Inf

When an operator, function call, or scalar assignment produces a NaN
(not-a-number) or Inf (infinite) value, MATLAB pauses, enters debug
mode, and opens the file. MATLAB pauses immediately after the line
that encountered the value. You can resume execution or use debugging
features.

Select options for these error breakpoints:

• Click Never stop... on a tab to clear that type of breakpoint.

• Click Always stop... on a tab to set that type of breakpoint.

• Select Use message identifiers... on a tab to limit each type of error
breakpoint (except NaN or Inf). Execution stops only for the error you
specify by the corresponding message identifier.

This option is not available for the NaN or Inf type of error breakpoint.
You can add multiple message identifiers, and edit or remove them.

Examples of Setting Warning and Error Breakpoints

Pausing Executing for Warnings. To pause execution when MATLAB
produces a warning:

1 Click the Warnings tab.

2 Click Always stop if warning, and then click OK.

Now, when you run a file and MATLAB produces a warning, execution pauses
and MATLAB enters debug mode. The file opens in the Editor at the line
that produced the warning.

Set Breakpoints for a Specific Error. To stop execution for a specific error
add a message identifier:

17-30

Debugging Process and Features

1 Click the Errors, Try/Catch Errors, or Warnings tab.

2 Click Use Message Identifiers.

3 Click Add.

4 In the resulting Add Message Identifier dialog box, type the message
identifier of the error for which you want to stop. The identifier is of the form
component:message (for example, MATLAB:narginchk:notEnoughInputs).
Then click OK.

The message identifier you specified appears in the Stop if Errors/Warnings
for All Files dialog box.

5 Click OK.

Obtain Error Message Identifiers. To obtain an error message identifier
generated by a MATLAB function, run the function to produce the error, and
then call MExeption.last. For example:

surf
MException.last

The Command Window displays the MException object, including the error
message identifier in the identifier field. For this example, it displays:

ans =

MException

Properties:
identifier: 'MATLAB:narginchk:notEnoughInputs'

message: 'Not enough input arguments.'
cause: {}
stack: [1x1 struct]

Methods

Obtain Warning Message Identifiers. To obtain a warning message
identifier generated by a MATLAB function, run the function to produce the
warning. Then, run:

17-31

17 Debugging MATLAB® Code

[m,id] = lastwarn

MATLAB returns the last warning identifier to id. An example of a warning
message identifier is MATLAB:concatenation:integerInteraction.

Function Alternative for Manipulating Error Breakpoints
The function equivalent for each option in the Stop if Errors/Warnings for
All Files dialog box, appears to the right of each option. For example, the
function equivalent for Always stop if error is dbstop if error. Use these
functions in the Command Window as listed in the following table.

To Use This Function

Set error breakpoints. dbstop

Clear error breakpoints. dbclear

View a list of currently set breakpoints,
including the condition and message identifier
for each error breakpoint.

dbstatus

17-32

18

Presenting MATLAB Code

MATLAB software enables you to present your MATLAB code in various
ways. You can share your code and results with others, even if they do
not have MATLAB software. You can save MATLAB output in various
formats, including HTML, XML, and LaTeX. If Microsoft Word or Microsoft
PowerPoint® applications are on your Microsoft Windows system, you can
publish to their formats as well.

• “Options for Presenting Your Code” on page 18-2

• “Document and Share Code Using Examples” on page 18-4

• “Publishing MATLAB Code” on page 18-6

• “Publishing Markup” on page 18-8

• “Output Preferences for Publishing” on page 18-29

• “Create a MATLAB Notebook with Microsoft Word” on page 18-44

18 Presenting MATLAB® Code

Options for Presenting Your Code
MATLAB provides options for presenting your code to others.

Method Description Output Formats Details

Command line
help

Use comments at the start
of a MATLAB file to display
help comments when you
type help file_name in the
Command Window.

• ASCII text “Add Help for Your
Program” on page 15-5

Publish Use comments with basic
markup to publish a
document that includes
text, bulleted or numbered
lists, MATLAB code, and
code results.

• XML

• HTML

• LaTeX

• Microsoft Word
(.doc/.docx)

• Microsoft
PowerPoint (ppt)

• PDF

“Publishing MATLAB
Code” on page 18-6

Publishing MATLAB
Code from the Editor
video

Help Browser
Topics

Create HTML and XML
files to provide your own
MATLAB help topics for
viewing from the MATLAB
Help browser or the Web.

• HTML “Display Custom
Documentation” on
page 25-16

Notebook Use Microsoft Word to create
electronic or printed records
of MATLAB sessions for
class notes, textbooks or
technical reports.

• Microsoft Word
(.doc/.docx)

“Create a MATLAB
Notebook with Microsoft
Word” on page 18-44

18-2

Options for Presenting Your Code

Method Description Output Formats Details

You must have Microsoft
Word software installed.

MATLAB
Report
Generator™

Use MATLAB Report
Generator to build complex
reports.

You must have MATLAB
Report Generator software
installed.

• RTF

• PDF

• Word

• HTML

• XML

MATLAB Report
Generator

18-3

18 Presenting MATLAB® Code

Document and Share Code Using Examples
An example is a readable version of a MATLAB code file that shows how to
a solve particular problem. MATLAB and all MATLAB toolboxes include
examples. You also can create your own examples from your source code
files. Creating an example enables you to clearly document the steps of a
task, because examples combine comments, code, and output together in a
formatted document.

For instance, the code in the following figure demonstrates the Fourier series
expansion for a square wave. When published, the example includes the
explanatory text, code, and output.

MATLAB Code with Markup Published Example

To create an example:

1 Create a MATLAB script or function. Divide the code into steps or sections
by inserting two percent signs (%%) at the beginning of each section.

18-4

Document and Share Code Using Examples

2 Document the code by adding explanatory comments at the beginning of
the file and within each section.

Within the comments at the top of each section, you can add markup that
enhances the readability of the output. For example, the code in the
preceding table includes the following markup.

Titles %% Square Waves from Sine Waves

%% Add an Odd Harmonic and Plot It

%% Note About Gibbs Phenomenon

Variable name in
italics

% As _k_ increases, ...

LaTeX equation % $$ y = y + \frac{sin(k*t)}{k} $$

3 Publish the code. On the Publish tab, click Publish.

By default, MATLAB creates a subfolder named html, which contains an
HTML file and files for each graphic that your code creates. The HTML
file includes the code, formatted comments, and output. Alternatively, you
can publish to other formats, such as PDF files or Microsoft PowerPoint
presentations.

To share published examples with others in the MATLAB community, submit
them to the File Exchange. Include the original .m file and the html subfolder.

See Also publish

Concepts • “MATLAB Code Examples”
• “Publishing Markup” on page 18-8
• “Output Preferences for Publishing” on page 18-29

External
Web Sites

• File Exchange

18-5

http://www.mathworks.com/matlabcentral/fileexchange/

18 Presenting MATLAB® Code

Publishing MATLAB Code
Publishing creates a formatted document that includes your code, comments,
and output. Common reasons to publish code are to share the documents
with others for teaching or demonstration, or to generate readable, external
documentation of your code.

For instance, the code in the following figure demonstrates the Fourier series
expansion for a square wave.

MATLAB Code with Markup Published Document

To publish your code:

1 Create a MATLAB script or function. Divide the code into steps or sections
by inserting two percent signs (%%) at the beginning of each section.

2 Document the code by adding explanatory comments at the beginning of
the file and within each section.

18-6

Publishing MATLAB® Code

Within the comments at the top of each section, you can add markup that
enhances the readability of the output. For example, the code in the
preceding table includes the following markup.

Titles %% Square Waves from Sine Waves

%% Add an Odd Harmonic and Plot It

%% Note About Gibbs Phenomenon

Variable name in
italics

% As _k_ increases, ...

LaTeX equation % $$ y = y + \frac{sin(k*t)}{k} $$

3 Publish the code. On the Publish tab, click Publish.

By default, MATLAB creates a subfolder named html, which contains an
HTML file and files for each graphic that your code creates. The HTML
file includes the code, formatted comments, and output. Alternatively, you
can publish to other formats, such as PDF files or Microsoft PowerPoint
presentations.

The sample code that appears in the previous figure is part of the installed
documentation. You can view the code in the Editor by running this command:

edit(fullfile(matlabroot,'help','techdoc','matlab_env', ...
'examples','fourier_demo2.m'))

See Also publish

Concepts • “Publishing Markup” on page 18-8
• “Output Preferences for Publishing” on page 18-29

18-7

18 Presenting MATLAB® Code

Publishing Markup

In this section...

“Markup Overview” on page 18-8

“Sections and Section Titles” on page 18-11

“Text Formatting” on page 18-13

“Bulleted and Numbered Lists” on page 18-14

“Text and Code Blocks” on page 18-15

“External Graphics” on page 18-16

“Image Snapshot” on page 18-19

“LaTeX Equations” on page 18-20

“Hyperlinks” on page 18-22

“HTML Markup” on page 18-25

“LaTeX Markup” on page 18-26

Markup Overview
This section describes how to mark up your MATLAB files so that the code
appears polished when publishing. You can single-source your MATLAB code
with documentation that describes its purpose.

You insert markup three different ways:

• Use the formatting buttons and drop-down menus on the Publish tab to
format the file. This method automatically inserts the text markup for you.

• Select markup from the Insert Text Markup list in the right click menu.

• Type the markup directly in the comments.

The following table provides a summary of the text markup options. Refer to
this table if you are not using the MATLAB Editor, or if you do not want to
use the Publish tab to apply the markup.

18-8

Publishing Markup

Note When working with markup:

• Spaces following the comment symbols (%) often determine the format of
the texts that follows.

• Starting new markup often requires preceding blank comment lines, as
shown in examples.

• Markup only works in comments that immediately follow a section break.

Result in Output Example of Corresponding File Markup

“Sections and Section Titles” on
page 18-11 %% SECTION TITLE

% DESCRIPTIVE TEXT

%%% SECTION TITLE WITHOUT SECTION BREAK
% DESCRIPTIVE TEXT

“Text Formatting” on page 18-13
% _ITALIC TEXT_

% *BOLD TEXT*

% |MONOSPACED TEXT|

% Trademarks:
% TEXT(TM)

% TEXT(R)

18-9

18 Presenting MATLAB® Code

Result in Output Example of Corresponding File Markup

“Bulleted and Numbered Lists”
on page 18-14 %% Bulleted List

%
% * BULLETED ITEM 1
% * BULLETED ITEM 2
%

%% Numbered List
%
% # NUMBERED ITEM 1
% # NUMBERED ITEM 2
%

“Text and Code Blocks” on page
18-15 %%

%
% PREFORMATTED
% TEXT
%

%% MATLAB(R) Code
%
% for i = 1:10
% disp x
% end
%

“External Graphics” on page
18-16 %

% <<FILENAME.PNG>>
%

“Image Snapshot” on page 18-19 snapnow;

18-10

Publishing Markup

Result in Output Example of Corresponding File Markup

“LaTeX Equations” on page
18-20 %% Inline Expression

% $x^2+e^{\pi i}$

%% Block Equation
% $$e^{\pi i} + 1 = 0$$

“Hyperlinks” on page 18-22
% <http://www.mathworks.com MathWorks>

% <matlab:FUNCTION DISPLAYED_TEXT>

“HTML Markup” on page 18-25
%
% <html>
% <table border=1><tr>
% <td>one</td>
% <td>two</td></tr></table>
% </html>
%

“LaTeX Markup” on page 18-26
%
% <latex>
% \begin{tabular}{|r|r}
% \hline n&$n!$\\
% \\hline 1&1\\ 2&2\\ 3&6\\
% \\hline
% \end{tabular}
% </latex>
%

Sections and Section Titles
Code sections allow you to organize, add comments, and execute portions of
your code. Code sections begin with double percent signs (%%) followed by an
optional section title. The section title displays as a top-level heading (h1
in HTML), using a larger, bold font.

18-11

18 Presenting MATLAB® Code

Note You can add comments in the lines immediately following the title.
However, if you want an overall document title, you cannot add any MATLAB
code before the start of the next section (a line starting with %%).

For instance, the following code produces a polished result when published.

%% Vector Operations
% You can perform a number of binary operations on vectors.
%%
A = 1:3;
B = 4:6;
%% Dot Product
% A dot product of two vectors yields a scalar.
% MATLAB has a simple command for dot products.
s = dot(A,B);
%% Cross Product
% A cross product of two vectors yields a third
% vector perpendicular to both original vectors.
% Again, MATLAB has a simple command for cross products.
v = cross(A,B);

By saving the code in an Editor and clicking the Publish button on the
Publish tab, MATLAB produces the output as shown in the following figure.
Notice that MATLAB automatically inserts a Contents menu from the section
titles in the MATLAB file.

18-12

Publishing Markup

Text Formatting
You can mark selected strings in the MATLAB comments so that they display
in italic, bold, or monospaced text when you publish the file. Simply surround
the text with _, *, or | for italic, bold, or monospaced text, respectively.

For instance, the following lines display each of the text formatting syntaxes
if published.

%% Calculate and Plot Sine Wave
% _Define_ the *range* for |x|

18-13

18 Presenting MATLAB® Code

Trademark Symbols
If the comments in your MATLAB file include trademarked terms, you can
include text to produce a trademark symbol (™) or registered trademark
symbol (®) in the output.

For example, suppose you enter lines in a file as shown below.

%% Basic Matrix Operations in MATLAB(R)
% This is a demonstration of some aspects of MATLAB(R)
% software and the Neural Network Toolbox(TM) software.

If you publish the file to HTML, it appears in the MATLAB Web browser.

Bulleted and Numbered Lists
MATLAB allows bulleted and numbered lists in the comments. You can use
the following syntax to produce bulleted and numbered lists.

%% Two Lists
%
% * ITEM1
% * ITEM2
%
% # ITEM1
% # ITEM2
%

Publishing the example code produces the following output.

18-14

Publishing Markup

Text and Code Blocks

Preformatted Text
Preformatted text appears in monospace font, maintains white space, and
does not wrap long lines. Two spaces must appear between the comment
symbol and the text of the first line of the preformatted text.

Publishing the following code produces a preformatted paragraph.

%%
% Many people find monospaced texts easier to read:
%
% A dot product of two vectors yields a scalar.
% MATLAB has a simple command for dot products.

18-15

18 Presenting MATLAB® Code

Syntax Highlighted Sample Code
Executable code appears with syntax highlighting in published documents.
You can also highlight sample code. Sample code is code that appears within
comments.

To indicate sample code, you must put three spaces between the comment
symbol and the start of the first line of code. For example, clicking the Code
button on the Publish tab puts the following code in your Editor.

%%
% Teach your computer to count to ten.
%
% for i = 1:10
% disp(x)
% end

Publishing this code to HTML produces output in the MATLAB Web browser.

External Graphics
You can insert text markup to publish an image that the MATLAB code does
not generate. By default, MATLAB already includes code-generated graphics.

You can insert a generic image called FILENAME.PNG into your published
output:

%%
%
% <<FILENAME.PNG>>
%

18-16

Publishing Markup

MATLAB requires FILENAME.PNG be a relative path from the output location
to your external image or a fully qualified URL. It is a good practice to save
your image in the same folder that MATLAB publishes its output. For
example, MATLAB publishes HTML documents to a subfolder html. Save
your image file in the same subfolder. You can change the output folder by
changing the publish configuration settings.

External Graphics Example Using surf(peaks)
This example shows how to insert surfpeaks.jpg into a MATLAB file for
publishing.

To create the surfpeaks.jpg, run the following code in the Command
Window.

saveas(surf(peaks),'surfpeaks.jpg');

To produce an HTML file containing surfpeaks.jpg from a MATLAB file:

1 Create a subfolder called html in your current folder.

2 Create surfpeaks.jpg by running this code in the Command Window.

saveas(surf(peaks),'html/surfpeaks.jpg');

3 Publish this MATLAB code to HTML.

%% Image Example
% This is a graphic:
%
% <<surfpeaks.jpg>>
%

18-17

18 Presenting MATLAB® Code

Valid Image Types for Output File Formats
The type of images you can include when you publish depends on the output
type of that document as indicated in this table. For greatest compatibility,
MathWorks recommends using the default image format for each output type.

Output File
Format

Default Image
Format

Types of Images You Can Include

doc png Any format that your installed
version of Microsoft Office supports.

html png All formats publish successfully.
Ensure that the tools you use to
view and process the output files
can display the output format you
specify.

18-18

Publishing Markup

Output File
Format

Default Image
Format

Types of Images You Can Include

latex png or epsc2 All formats publish successfully.
Ensure that the tools you use to
view and process the output files
can display the output format you
specify.

pdf bmp bmp and jpg.

ppt png Any format that your installed
version of Microsoft Office supports.

xml png All formats publish successfully.
Ensure that the tools you use to
view and process the output files
can display the output format you
specify.

Image Snapshot
You can insert code that captures a snapshot of your MATLAB output. This
is useful, for example, if you have a for loop that modifies a figure that you
want to capture after each iteration.

For example, the following code runs a for loop three times and produces
output after every iteration. The snapnow command captures all three images
produced by the code.

%% Scale magic Data and Display as Image

for i=1:3
imagesc(magic(i))
snapnow;

end

If you publish the file to HTML, it resembles the following figure. By default,
the images in the HTML are larger than shown in the figure. To resize
images generated by MATLAB code, use the Max image width and Max
image height fields in the Publish settings pane, as described in “Output
Preferences for Publishing” on page 18-29.

18-19

18 Presenting MATLAB® Code

LaTeX Equations

Inline LaTeX Expression
MATLAB allows you to include an inline LaTeX expression in any code that
you intend to publish. To insert an inline expression, surround your LaTeX
markup with dollar sign characters ($).

Note All publishing output types support LaTeX expressions, except
Microsoft PowerPoint.

This code contains a LaTeX expression:

%% LaTeX Inline Expression Example
%
% This is an equation: $x^2+e^{\pi i}$. It is
% inline with the text.

If you publish the sample text markup to HTML, the output appears:

18-20

Publishing Markup

LaTeX Display Equation
MATLAB allows you to insert LaTeX symbols in blocks offset from the main
comment text. Two dollar sign characters ($$) on each side of your equation
denotes a block LaTeX equation.

This code is a sample text markup.

%% LaTeX Equation Example
%
% This is an equation:
%
% $$e^{\pi i} + 1 = 0$$
%
% It is not in line with the text.

If you publish to HTML, the expression appears as shown here.

18-21

18 Presenting MATLAB® Code

Hyperlinks

Static Hyperlinks
You can insert static hyperlinks within a MATLAB comment, and then
publish the file to HTML, XML or Microsoft Word. When specifying a static
hyperlink to a Web location, you must include a complete URL within the
code. This is useful when you want to point the reader to a Web location. You
can display or hide the URL in the published text. Consider excluding the
URL, when you are confident that readers are viewing your output online
and can click the hyperlink.

Enclose URLs and any replacement text in angled brackets.

%%
% For more information, see our Web site:
% <http://www.mathworks.com MathWorks>

Publishing the code to HTML produces the following output.

Eliminating the text MathWorks after the URL produces the following
modified output.

Note If your code produces hyperlinked text in the MATLAB Command
Window, the output shows the HTML code rather than the hyperlink.

18-22

Publishing Markup

Dynamic Hyperlinks
You can insert dynamic hyperlinks, which MATLAB evaluates at the time
a reader clicks that link. Dynamic hyperlinks allow you to point the reader
to MATLAB code or documentation, or allow the reader to run code. You
implement these links using matlab: syntax.

Note Dynamic links only work when viewing HTML in the MATLAB Web
browser.

Diverse uses of dynamic links include:

• “Dynamic Link to Run Code” on page 18-23

• “Dynamic Link to a File” on page 18-24

• “Dynamic Link to a MATLAB Function Reference Page” on page 18-25

Dynamic Link to Run Code. You can specify a dynamic hyperlink to run
code when a user clicks the hyperlink. For example, the following matlab:
syntax creates hyperlinks in the output, which when clicked either enable
or disable recycling:

%% Recycling Preference
% Click the preference you want:
%
% <matlab:recycle('off') Disable recycling>
%
% <matlab:recycle('on') Enable recycling>

When you publish the file to HTML, the results resemble the following.

18-23

18 Presenting MATLAB® Code

When you click one of the hyperlinks, MATLAB sets the recycle command
accordingly. After clicking a hyperlink, run recycle in the Command Window
to confirm the setting is as you expect.

Dynamic Link to a File. You can specify a link to a file that you know is
in your readers’ matlabroot. You do not need to know where each reader
installed MATLAB. For example, link to the function code for publish.

%%

% See the

% <matlab:edit(fullfile(matlabroot,'toolbox','matlab','codetools','publish.m')) code>

% for the publish function.

Next, publish the file to HTML.

When you click the code link, the MATLAB Editor opens and displays the
code for the publish function. On the reader’s system, MATLAB issues the
command (although the command does not appear in the reader’s Command
Window).

18-24

Publishing Markup

Dynamic Link to a MATLAB Function Reference Page. You can specify
a link to a MATLAB function reference page using matlab: syntax. For
example, suppose your readers have MATLAB installed and running. Provide
a link to the publish reference page:

%%
% See the help for the <matlab:doc('publish') publish> function.

Publish the file to HTML.

When you click the publish hyperlink, the MATLAB help browser opens and
displays the reference page for the publish function. On the reader’s system,
MATLAB issues the command, although the command does not appear in
their Command Window.

HTML Markup
You can insert HTML markup into your MATLAB file. You must type HTML
markup; no button on the Publish tab generates it.

Note When you insert text markup for HTML code, the HTML code
publishes only when the specified output file format is HTML.

The following code includes HTML tagging.

%% HTML Markup Example
% This is a table:
%
% <html>
% <table border=1><tr><td>one</td><td>two</td></tr>
% <tr><td>three</td><td>four</td></tr></table>
% </html>
%

18-25

18 Presenting MATLAB® Code

If you publish the code to HTML, MATLAB creates a single-row table with
two columns. The table contains the values one, two, three, and four.

If a section produces command-window output that starts with <html> and
ends with </html>, MATLAB includes the source HTML in the published
output. For example, MATLAB displays the disp command and makes a
table from the HTML code if you publish this code:

disp('<html><table><tr><td>1</td><td>2</td></tr><\table></html>')

LaTeX Markup
You can insert LaTeX markup into your MATLAB file. Any LaTeX markup
must be typed; no button on the Publish tab generates it.

18-26

Publishing Markup

Note When you insert text markup for LaTeX code, that code publishes only
when the specified output file format is LaTeX.

The following code is an example of LaTeX markup.

%% LaTeX Markup Example
% This is a table:
%
% <latex>
% \begin{tabular}{|c|c|} \hline
% n & $n!$ \\ \hline
% 1 & 1 \\
% 2 & 2 \\
% 3 & 6 \\ \hline
% \end{tabular}
% </latex>

If you publish the file to LaTeX, then the Editor opens a new .tex file
containing the LaTeX markup.

% This LaTeX was auto-generated from an M-file by MATLAB.
% To make changes,
% update the M-file and republish this document.

\documentclass{article}
\usepackage{graphicx}
\usepackage{color}

\sloppy
\definecolor{lightgray}{gray}{0.5}
\setlength{\parindent}{0pt}

\begin{document}

\section*{LaTeX Markup Example}

18-27

18 Presenting MATLAB® Code

\begin{par}
This is a table:
\end{par} \vspace{1em}
\begin{par}

\begin{tabular}{|c|c|} \hline
n & $n!$ \\ \hline
1 & 1 \\
2 & 2 \\
3 & 6 \\ \hline
\end{tabular}

\end{par} \vspace{1em}

\end{document}

MATLAB includes any additional markup necessary to compile this file with
a LaTeX program.

Concepts • “Publishing MATLAB Code” on page 18-6
• “Output Preferences for Publishing” on page 18-29

18-28

Output Preferences for Publishing

Output Preferences for Publishing

In this section...

“How to Edit Publishing Options” on page 18-29

“Specify Output File” on page 18-30

“Run Code During Publishing” on page 18-31

“Manipulate Graphics in Publishing Output” on page 18-34

“Save a Publish Setting” on page 18-38

“Manage a Publish Configuration” on page 18-40

How to Edit Publishing Options
Use the default publishing preferences if your code requires no input
arguments and you want to publish to HTML. However, if your code requires
input arguments, or if you want to specify output settings, code execution, or
figure formats, then specify a custom configuration.

1 Locate the Publish tab and click the Publish button arrow .

2 Select Edit Publishing Options.

The Edit Configurations dialog box opens. Specify output preferences.

18-29

18 Presenting MATLAB® Code

The MATLAB expression pane specifies the code that executes during
publishing. The Publish settings pane contains output, figure, and code
execution options. Together, they make what MATLAB refers to as a publish
configuration. MATLAB associates each publish configuration with an .m file.
The name of the publish configuration appears in the top left pane.

Specify Output File
You specify the output format and location on the Publish settings pane.

MATLAB publishes to these formats.

Format Notes

html Publishes to an HTML document. You can use an
Extensible Stylesheet Language (XSL) file.

xml Publishes to XML document. You can use an Extensible
Stylesheet Language (XSL) file.

18-30

Output Preferences for Publishing

Format Notes

latex Publishes to LaTeX document. Does not preserve syntax
highlighting. You can use an Extensible Stylesheet
Language (XSL) file.

doc Publishes to a Microsoft Word document, if your system is
a PC. Does not preserve syntax highlighting.

ppt Publishes to a Microsoft PowerPoint document, if your
system is a PC. Does not preserve syntax highlighting.

pdf Publishes to a PDF document.

Note XSL files allow you more control over the
appearance of the output document. For more details, see
http://docbook.sourceforge.net/release/xsl/current/doc/.

Run Code During Publishing

• “Specifying Code” on page 18-31

• “Evaluating Code” on page 18-32

• “Including Code” on page 18-33

• “Catching Errors” on page 18-33

• “Limiting the Amount of Output” on page 18-33

Specifying Code
By default, MATLAB executes the .m file that you are publishing. However,
you can specify any valid MATLAB code in the MATLAB expression pane.
For example, if you want to publish a function that requires input, then you
should run the command function(input). Additional code, whose output
you want to publish, should appear after the functions call. If you clear
the MATLAB expression area, then MATLAB publishes the file without
evaluating any code.

18-31

http://docbook.sourceforge.net/release/xsl/current/doc/

18 Presenting MATLAB® Code

Note Publish configurations use the base MATLAB workspace. Therefore,
a variable in the MATLAB expression pane overwrites the value for an
existing variable in the base workspace.

Evaluating Code
Another way to affect what MATLAB executes during publishing is to set the
Evaluate code option in the Publish setting pane. This option indicates
whether MATLAB evaluates the code in the .m file that is publishing. If set
to true, MATLAB executes the code and includes the results in the output
document.

Because MATLAB does not evaluate the code nor include code results when
you set the Evaluate code option to false, there can be invalid code in the
file. Therefore, consider first running the file with this option set to true.

For example, suppose you include comment text, Label the plot, in a file,
but forget to preface it with the comment character. If you publish the
document to HTML, and set the Evaluate code option to true, the output
includes an error.

Use the false option to publish the file that contains the publish function.
Otherwise, MATLAB attempts to publish the file recursively.

18-32

Output Preferences for Publishing

Including Code
You can specify whether to display MATLAB code in the final output. If you
set the Include code option to true, then MATLAB includes the code in the
published output document. If set to false, MATLAB excludes the code from
all output file formats, except HTML.

If the output file format is HTML, MATLAB inserts the code as an HTML
comment that is not visible in the Web browser. If you want to extract the
code from the output HTML file, use the MATLAB grabcode function.

For example, suppose you publish
H:/my_matlabfiles/my_mfiles/sine_wave.m to HTML using a publish
configuration with the Include code option set to false. If you share
the output with colleagues, they can view it in a Web browser. To see the
MATLAB code that generated the output, they can issue the following
command from the folder containing sine_wave.html:

grabcode('sine_wave.html')

MATLAB opens the file that created sine_wave.html in the Editor.

Catching Errors
You can catch and publish any errors that occur during publishing. Setting
the Catch error option to true includes any error messages in the output
document. If you set Catch error to false, MATLAB terminates the publish
operation if an error occurs during code evaluation. However, this option has
no effect if you set the Evaluate code property to false.

Limiting the Amount of Output
You can limit the number of lines of code output that is included in the output
document by specifying the Max # of output lines option in the Publish
settings pane. Setting this option is useful if a smaller, representative
sample of the code output suffices.

For example, the following loop generates 100 lines in a published output
unless Max # of output lines is set to a lower value.

for n = 1:100
disp(x)

18-33

18 Presenting MATLAB® Code

end;

Manipulate Graphics in Publishing Output

• “Choosing an Image Format” on page 18-34

• “Setting an Image Size” on page 18-35

• “Capturing Figures” on page 18-35

• “Specifying a Custom Figure Window” on page 18-36

• “Creating a Thumbnail” on page 18-38

Choosing an Image Format
When publishing, you can choose the image format that MATLAB uses to store
any graphics generated during code execution. The available image formats
in the drop-down list depend on the setting of the Figure capture method
option. For greatest compatibility, select the default as specified in this table.

Output File
Format

Default Image
Format

Types of Images You Can Include

doc png Any format that your installed
version of Microsoft Office supports.

html png All formats publish successfully.
Ensure that the tools you use to
view and process the output files
can display the output format you
specify.

latex png or epsc2 All formats publish successfully.
Ensure that the tools you use to
view and process the output files
can display the output format you
specify.

pdf bmp bmp and jpg.

18-34

Output Preferences for Publishing

Output File
Format

Default Image
Format

Types of Images You Can Include

ppt png Any format that your installed
version of Microsoft Office supports.

xml png All formats publish successfully.
Ensure that the tools you use to
view and process the output files
can display the output format you
specify.

Setting an Image Size
You set the size of MATLAB generated images in the Publish settings pane
on the Edit Configurations dialog window. You specify the image size in pixels
to restrict the width and height of images in the output. The pixel values act
as a maximum size value because MATLAB maintains an image’s aspect
ratio. MATLAB ignores the size setting for the following cases:

• When working with external graphics as described in “External Graphics”
on page 18-16

• When using vector formats, such as .eps

• When publishing to .pdf

Capturing Figures
You can capture different aspects of the Figure window by setting the Figure
capture method option. This option determines the window decorations
(title bar, toolbar, menu bar, and window border) and plot backgrounds for
the Figure window.

This table summarizes the effects of the various Figure capture methods.

18-35

18 Presenting MATLAB® Code

Use This Figure Capture
Method

To Get Figure Captures with These Appearance Details

Window Decorations Plot Backgrounds

entireGUIWindow Included for dialog boxes;
Excluded for figures

Set to white for figures;
matches the screen for dialog
boxes

print Excluded for dialog boxes and
figures

Set to white

getframe Excluded for dialog boxes and
figures

Matches the screen plot
background

entireFigureWindow Included for dialog boxes and
figures

Matches the screen plot
background

Note Typically, MATLAB figures have the HandleVisibility property set to
on. Dialog boxes are figures with the HandleVisibility property set to off or
callback. If your results are different from the results listed in the preceding
table, the HandleVisibility property of your figures or dialog boxes might
be atypical. For more information, see “HandleVisibility Property”.

Specifying a Custom Figure Window
MATLAB allows you to specify custom appearance for figures it creates. If
the Use new figure option in the Publish settings pane is set to true, then
in the published output, MATLAB uses a Figure window at the default size
and with a white background. If the Use new figure option is set to false,
then MATLAB uses the properties from an open Figure window to determine
the appearance of code-generated figures. This preference does not apply to
figures included using the syntax in “External Graphics” on page 18-16.

Use the following code as a template to produce Figure windows that meet
your needs.

% Create figure
figure1 = figure('Name','purple_background',...
'Color',[0.4784 0.06275 0.8941]);

18-36

Output Preferences for Publishing

colormap('hsv');

% Create subplot
subplot(1,1,1,'Parent',figure1);
box('on');

% Create axis labels
xlabel('x-axis');
ylabel({'y-axis'})

% Create title
title({'Title'});

By publishing your file with this window open and the Use new figure
option set to false, any code-generated figure takes the properties of the
open Figure window.

Note You must set the Figure capture method option to
entireFigureWindow for the final published figure to display all the
properties of the open Figure window.

18-37

18 Presenting MATLAB® Code

Creating a Thumbnail
You can save the first code-generated graphic as a thumbnail image. You
can use this thumbnail to represent your file on HTML pages. To create a
thumbnail, follow these steps:

1 On the Publish tab, click the Publish button drop-down arrow and select
Edit Publishing Options. The Edit Configurations dialog box opens.

2 Set the Image Format option to a bitmap format, such as .png or .jpg.
MATLAB creates thumbnail images in bitmap formats.

3 Set the Create thumbnail option to true.

MATLAB saves the thumbnail image in the folder specified by the Output
folder option in the Publish settings pane.

Save a Publish Setting
You can save your publish settings, which allows you to easily reproduce
output. It can be useful to save your commonly used publish settings.

18-38

Output Preferences for Publishing

When the Publish settings options are set, you can follow these steps to
save the settings:

1 Click Save As when the options are set in the manner you want.

The Save Publish Settings As dialog box opens and displays the names of
all the currently defined publish settings. By default the following publish
settings install with MATLAB:

• Factory Default

You cannot overwrite the Factory Default and can restore them by
selecting Factory Default from the Publish settings list.

• User Default

Initially, User Default settings are identical to the Factory Default
settings. You can overwrite the User Default settings.

18-39

18 Presenting MATLAB® Code

2 In the Settings Name field, enter a meaningful name for the settings.
Then click Save.

You can now use the publish settings with other MATLAB files.

You also can overwrite the publishing properties saved under an existing
name. Select the name from the Publish settings list, and then click
Overwrite.

Manage a Publish Configuration

• “Running an Existing Publish Configuration” on page 18-40

• “Creating Multiple Publish Configurations for a File” on page 18-41

• “Reassociating and Renaming Publish Configurations” on page 18-42

• “Using Publish Configurations across Different Systems” on page 18-42

Together, the code in the MATLAB expression pane and the settings in
the Publish settings pane make a publish configuration that is associated
with one file. These configurations provide a simple way to refer to publish
preferences for individual files.

To create a publish configuration, click the Publish button drop-down arrow
on the Publish tab, and select Edit Publishing Options. The Edit
Configurations dialog box opens, containing the default publish preferences.
In the Publish configuration name field, type a name for the publish
configuration, or accept the default name. The publish configuration saves
automatically.

Running an Existing Publish Configuration
After saving a publish configuration, you can run it without opening the Edit
Configurations dialog box:

1 Click the Publish button drop-down arrow If you position your mouse
pointer on a publish configuration name, MATLAB displays a tooltip
showing the MATLAB expression associated with the specific configuration.

18-40

Output Preferences for Publishing

2 Select a configuration name to use for the publish configuration. MATLAB
publishes the file using the code and publish settings associated with the
configuration.

Creating Multiple Publish Configurations for a File
You can create multiple publish configurations for a given file. You might
do this to publish the file with different values for input arguments,
with different publish setting property values, or both. Create a named
configuration for each purpose, all associated with the same file. Later you
can run whichever particular publish configuration you want.

Use the following steps as a guide to create new publish configurations.

1 Open a file in your Editor.

2 Click on the Publish button drop-down arrow, and select Edit Publishing
Options. The Edit Configurations dialog box opens.

3 Click the Add button located on the left pane.

A new name appears on the configurations list, filename_n, where the
value of n depends on the existing configuration names.

18-41

18 Presenting MATLAB® Code

4 If you modify settings in the MATLAB expression or Publish setting
pane, MATLAB automatically saves the changes.

Reassociating and Renaming Publish Configurations
Each publish configuration is associated with a specific file. If you move or
rename a file, redefine its association. If you delete a file, consider deleting
the associated configurations, or associating them with a different file.

When MATLAB cannot associate a configuration with a file, the Edit
Configurations dialog box displays the file name in red and a File Not
Found message. To reassociate a configuration with another file, perform the
following steps.

1 Click the Clear search button on the left pane of the Edit Configurations
dialog box.

2 Select the file for which you want to reassociate publish configurations.

3 In the right pane of the Edit Configurations dialog box, click Choose.... In
the Open dialog box, navigate to and select the file with which you want to
reassociate the configurations.

You can rename the configurations at any time by selecting a configuration
from the list in the left pane. In the right pane, edit the value for the Publish
configuration name.

Note To run correctly after a file name change, you might need to change the
code statements in the MATLAB expression pane. For example, change a
function call to reflect the new file name for that function.

Using Publish Configurations across Different Systems
Each time you create or save a publish configurations using the Edit
Configurations dialog box, the Editor updates the publish_configurations.m
file in your preferences folder. (This is the folder that MATLAB returns when
you run the MATLAB prefdir function.)

18-42

Output Preferences for Publishing

Although you can port this file from the preferences folder on one system to
another, only one publish_configurations.m file can exist on a system.
Therefore, only move the file to another system if you have not created
any publish configurations on the second system. In addition, because the
publish_configurations.m file might contain references to file paths, be
sure that the specified files and paths exist on the second system.

MathWorks recommends that you not update publish_configurations.m in
the MATLAB Editor or a text editor. Changes that you make using tools other
than the Edit Configurations dialog box might be overwritten later.

Concepts • “Publishing MATLAB Code” on page 18-6
• “Publishing Markup” on page 18-8

18-43

18 Presenting MATLAB® Code

Create a MATLAB Notebook with Microsoft Word

In this section...

“Getting Started with MATLAB Notebooks” on page 18-44

“Creating and Evaluating Cells in a MATLAB Notebook” on page 18-46

“Formatting a MATLAB Notebook” on page 18-52

“Tips for Using MATLAB Notebooks” on page 18-55

“Configuring the MATLAB Notebook Software” on page 18-56

Getting Started with MATLAB Notebooks
You can use the notebook function to open Microsoft Word and record
MATLAB sessions to supplement class notes, textbooks, or technical reports.
After executing the notebook function, you run MATLAB commands directly
from Word itself. This Word document is known as a MATLAB Notebook. As
an alternative, consider using the MATLAB publish function.

Using the notebook command, you create a Microsoft Word document. You
then can type text, input cells (MATLAB commands), and output cells (results
of MATLAB commands) directly into this document. You can format the input
in the same manner as any Microsoft Word document. You can think of this
document as a record of an interactive MATLAB session annotated with text,
or as a document embedded with live MATLAB commands and output.

Note The notebook command is available only on Windows systems that
have Microsoft Word installed.

Creating or Opening a MATLAB Notebook
If you are running the notebook command for the first time since you
installed a new version of MATLAB, follow the instructions in “Configuring
the MATLAB Notebook Software” on page 18-56. Otherwise, you can create a
new or open an existing notebook:

18-44

Create a MATLAB® Notebook with Microsoft® Word

• To open a new notebook, execute the notebook function in the MATLAB
Command Window.

The notebook command starts Microsoft Word on your system and creates
a MATLAB Notebook, called Document1. If a dialog box appears asking you
to enable or disable macros, choose to enable macros.

Word adds the Notebook menu to the Word Add-Ins tab, as shown in
the following figure.

Microsoft product screen shot reprinted with permission from Microsoft
Corporation.

• To open an existing notebook, execute notebook file_name in the
MATLAB Command Window, where file_name is the name of an existing
MATLAB notebook.

Converting a Word Document to a MATLAB Notebook. To convert a
Microsoft Word document to a MATLAB Notebook, insert the document into
a notebook file:

1 Create a MATLAB Notebook.

2 From the Insert tab, in the Text group, click the arrow next to Object.

3 Select Text from File. The Insert File dialog box opens.

4 Navigate and select the Word file that you want to convert in the Insert
File dialog box.

Running Commands in a MATLAB Notebook
You enter MATLAB commands in a notebook the same way you enter text
in any other Word document. For example, you can enter the following text

18-45

18 Presenting MATLAB® Code

in a Word document. The example uses text in Courier Font, but you can
use any font:

Here is a sample MATLAB Notebook.

a = magic(3)

Execute a single command by pressing Crtl+Enter on the line containing
the MATLAB command. Execute a series of MATLAB commands using
these steps:

1 Highlight the commands you want to execute.

2 Click the Notebook drop-down list on the Add-Ins tab.

3 Select Evaluate Cell.

MATLAB displays the results in the Word document below the original
command or series of commands.

Note A good way to experiment with MATLAB Notebook is to open a sample
notebook, Readme.doc. You can find this file in the matlabroot/notebook/pc
folder.

Creating and Evaluating Cells in a MATLAB Notebook

• “Creating Input Cells” on page 18-46

• “Evaluating Input Cells” on page 18-48

• “Undefining Cells” on page 18-50

• “Defining Calc Zones” on page 18-51

Creating Input Cells
Input cells allow you to break up your code into manageable pieces and
execute them independently. To define a MATLAB command in a Word
document as an input cell:

18-46

Create a MATLAB® Notebook with Microsoft® Word

1 Type the command into the MATLAB Notebook as text. For example,

This is a sample MATLAB Notebook.

a = magic(3)

2 Position the cursor anywhere in the command, and then select Define Input
Cell from the Notebook drop-down list. If the command is embedded in a line
of text, use the mouse to select it. The characters appear within cell markers
([]). Cell markers are bold, gray brackets. They differ from the brackets
used to enclose matrices by their size and weight.

[a = magic(3)]

Creating Autoinit Input Cells. Autoinit cells are identical to input cells
with additional characteristics:

• Autoinit cells evaluate when MATLAB Notebook opens.

• Commands in autoinit cells display in dark blue characters.

To create an autoinit cell, highlight the text, and then select Define AutoInit
Cell from the Notebook drop-down list.

Creating Cell Groups. You can collect several input cells into a single input
cell, called a cell group. All the output from a cell group appears in a single
output cell immediately after the group. Cell groups are useful when you need
several MATLAB commands to execute in sequence. For instance, defining
labels and tick marks in a plot requires multiple commands:

x = -pi:0.1:pi;
plot(x,cos(x))
title('Sample Plot')
xlabel('x')
ylabel('cos(x)')
set(gca,'XTick',-pi:pi:pi)
set(gca,'XTickLabel',{'-pi','0','pi'})

To create a cell group:

1 Use the mouse to select the input cells that are to make up the group.

18-47

18 Presenting MATLAB® Code

2 Select Group Cells from the Notebook drop-down list.

A single pair of cell markers now surrounds the new cell group.

[x = -pi:0.1:pi;
plot(x,cos(x))
title('Sample Plot')
xlabel('x')
ylabel('cos(x)')
set(gca,'XTick',-pi:pi:pi)
set(gca,'XTickLabel',{'-pi','0','pi'})]

When working with cell groups, you should note several behaviors:

• A cell group cannot contain output cells. If the selection includes output
cells, they are deleted.

• A cell group cannot contain text. If the selection includes text, the text
appears after the cell group, unless it precedes the first input cell in the
selection.

• If you select part or all of an output cell, the cell group includes the
respective input cell.

• If the first line of a cell group is an autoinit cell, then the entire group is
an autoinit cell.

Evaluating Input Cells
After you define a MATLAB command as an input cell, you can evaluate it in
your MATLAB Notebook using these steps:

1 Highlight or place your cursor in the input cell you want to evaluate.

2 Select Evaluate Cell in the Notebook drop-down list, or press Ctrl+Enter.

The notebook evaluates and displays the results in an output cell immediately
following the input cell. If there is already an output cell, its contents update
wherever the output cell appears in the notebook. For example:

This is a sample MATLAB Notebook.

[a = magic(3)]

18-48

Create a MATLAB® Notebook with Microsoft® Word

[a =
8 1 6
3 5 7
4 9 2]

To evaluate more than one MATLAB command contained in different, but
contiguous input cells:

1 Select a range of cells that includes the input cells you want to evaluate. You
can include text that surrounds input cells in your selection.

2 Select Evaluate Cell in the Notebook drop-down list or press Ctrl+Enter.

Note Text or numeric output always displays first, regardless of the order of
the commands in the group.

When each input cell evaluates, new output cells appear or existing ones are
replaced. Any error messages appear in red, by default.

Evaluating Cell Groups. Evaluate a cell group the same way you evaluate
an input cell (because a cell group is an input cell):

1 Position the cursor anywhere in the cell or in its output cell.

2 Select Evaluate Cell in the Notebook drop-down list or press Ctrl+Enter.

When MATLAB evaluates a cell group, the output for all commands in the
group appears in a single output cell. By default, the output cell appears
immediately after the cell group the first time the cell group is evaluated. If
you evaluate a cell group that has an existing output cell, the results appear
in that output cell, wherever it is located in the MATLAB Notebook.

Using a Loop to Evaluate Input Cells Repeatedly. MATLAB allows you
to evaluate a sequence of MATLAB commands repeatedly, using these steps:

1 Highlight the input cells, including any text or output cells located between
them.

18-49

18 Presenting MATLAB® Code

2 Select Evaluate Loop in the Notebook drop-down list. The Evaluate Loop
dialog box appears.

Microsoft product screen shot reprinted with permission from Microsoft
Corporation.

3 Enter the number of times you want to evaluate the selected commands in the
Stop After field, then click Start. The button changes to Stop. Command
evaluation begins, and the number of completed iterations appears in the
Loop Count field.

You can increase or decrease the delay at the end of each iteration by clicking
Slower or Faster.

Evaluating an Entire MATLAB Notebook. To evaluate an entire MATLAB
Notebook, select Evaluate MATLAB Notebook in the Notebook drop-down
list. Evaluation begins at the top of the notebook, regardless of the cursor
position and includes each input cell in the file. As it evaluates the file, Word
inserts new output cells or replaces existing output cells.

If you want to stop evaluation if an error occurs, set the Stop evaluating on
error check box on the Notebook Options dialog box.

Undefining Cells
You can always convert cells back to normal text. To convert a cell (input,
output, or a cell group) to text:

18-50

Create a MATLAB® Notebook with Microsoft® Word

1 Highlight the input cell or position the cursor in the input cell.

2 Select Undefine Cells from the Notebook drop-down list.

When the cell converts to text, the cell contents reformat according to the
Microsoft Word Normal style.

Note

• Converting input cells to text also converts their output cells.

• If the output cell is graphical, the cell markers disappear and the graphic
dissociates from its input cell, but the contents of the graphic remain.

Defining Calc Zones
You can partition a MATLAB Notebook into self-contained sections, called
calc zones. A calc zone is a contiguous block of text, input cells, and output
cells. Section breaks appear before and after the section, defining the calc
zone. The section break indicators include bold, gray brackets to distinguish
them from standard Word section breaks.

You can use calc zones to prepare problem sets, making each problem a
calc zone that you can test separately. A notebook can contain any number
of calc zones.

Note Calc zones do not affect the scope of the variables in a notebook.
Variables defined in one calc zone are accessible to all calc zones.

Creating a Calc Zone.

1 Select the input cells and text you want to include in the calc zone.

2 Select Define Calc Zone under the Notebook drop-down list.

A calc zone cannot begin or end in a cell.

18-51

18 Presenting MATLAB® Code

Evaluating a Calc Zone.

1 Position the cursor anywhere in the calc zone.

2 Select Evaluate Calc Zone from the Notebook drop-down list or press
Alt+Enter.

By default, the output cell appears immediately after the calc zone the first
time you evaluate the calc zone. If you evaluate a calc zone with an existing
output cell, the results appear in the output cell wherever it is located in the
MATLAB Notebook.

Formatting a MATLAB Notebook

• “Modifying Styles in the MATLAB Notebook Template” on page 18-52

• “Controlling the Format of Numeric Output” on page 18-53

• “Controlling Graphic Output” on page 18-53

Modifying Styles in the MATLAB Notebook Template
You can control the appearance of the text in your MATLAB Notebook by
modifying the predefined styles in the notebook template, m-book.dot. These
styles control the appearance of text and cells.

This table describes MATLAB Notebook default styles. For general
information about using styles in Microsoft Word documents, see the
Microsoft Word documentation.

Style Font Size Weight Color

Normal Times New
Roman®

10 points N/A Black

AutoInit Courier New 10 points Bold Dark blue

Error Courier New 10 points Bold Red

Input Courier New 10 points Bold Dark green

Output Courier New 10 points N/A Blue

18-52

Create a MATLAB® Notebook with Microsoft® Word

When you change a style, Word applies the change to all characters in the
notebook that use that style and gives you the option to change the template.
Be cautious about changing the template. If you choose to apply the changes
to the template, you affect all new notebooks that you create using the
template. See the Word documentation for more information.

Controlling the Format of Numeric Output
To change how numeric output displays, select Notebook Options from the
Notebook drop-down list. The Notebook Options dialog box opens, containing
the Numeric format pane.

Microsoft product screen shot reprinted with permission from Microsoft
Corporation.

You can select a format from the Format list. Format choices correspond to
the same options available with the MATLAB format command

The Loose and Compact settings control whether a blank line appears
between the input and output cells. To suppress this blank line select
Compact.

Controlling Graphic Output
MATLAB allows you to embed graphics, suppress graphic output and adjust
the graphic size.

By default, MATLAB embeds graphic output in a Notebook. To display
graphic output in a separate figure window, click Notebook Options from
the Notebook drop-down list. The Notebook Options dialog box opens,
containing the Figure options pane.

18-53

18 Presenting MATLAB® Code

Microsoft product screen shot reprinted with permission from Microsoft
Corporation.

From this pane, you can choose whether to embed figures in the MATLAB
Notebook. You can adjust the height and width of the figure in inches,
centimeters, or points.

Note Embedded figures do not include Handle Graphics objects generated by
the uicontrol and uimenu functions.

To prevent an input cell from producing a figure, select Toggle Graph
Output for Cell from the Notebook drop-down list. The string (no graph)
appears after the input cell and the input cell does not produce a graph if
evaluated. To undo the figure suppression, select Toggle Graph Output for
Cell again or delete the text (no graph).

Note Toggle Graph Output for Cell overrides the Embed figures in
MATLAB Notebook option, if that option is set.

18-54

Create a MATLAB® Notebook with Microsoft® Word

Tips for Using MATLAB Notebooks

Protecting the Integrity of Your Workspace in MATLAB
Notebooks
If you work on more than one MATLAB Notebook in a single word-processing
session, notice that

• Each notebook uses the same MATLAB executable.

• All notebooks share the same workspace. If you use the same variable
names in more than one notebook, data used in one notebook can be
affected by another notebook.

Note You can protect the integrity of your workspace by specifying the clear
command as the first autoinit cell in the notebook.

Ensuring Data Consistency in MATLAB Notebooks
You can think of a MATLAB Notebook as a sequential record of a MATLAB
session. When executed in sequential order, the notebook accurately reflects
the relationships among the commands.

If, however, you edit input cells or output cells as you refine your notebook,
it can contain inconsistent data. Input cells that depend on the contents or
the results of other cells do not automatically recalculate when you make a
change.

When working in a notebook, consider selecting Evaluate MATLAB
Notebook periodically to ensure that your notebook data is consistent.
You can also use calc zones to isolate related commands in a section of the
notebook, and then use Evaluate Calc Zone to execute only those input cells
contained in the calc zone.

Debugging and MATLAB Notebooks
Do not use debugging functions or the Editor while evaluating cells within a
MATLAB Notebook. Instead, use this procedure:

18-55

18 Presenting MATLAB® Code

1 Complete debugging files from within MATLAB.

2 Clear all the breakpoints.

3 Access the file using notebook.

If you debug while evaluating a notebook, you can experience problems with
MATLAB.

Configuring the MATLAB Notebook Software
After you install MATLAB Notebook software, but before you begin using it,
specify that Word can use macros, and then configure the notebook command.
The notebook function installs as part of the MATLAB installation process
on Microsoft Windows platforms. For more information, see the MATLAB
installation documentation.

Note Word explicitly asks whether you want to enable macros. If it does not,
refer to the Word help. You can search topics relating to macros, such as
“enable or disable macros”.

To configure MATLAB Notebook software, type the following in the MATLAB
Command Window:

notebook -setup

MATLAB configures the Notebook software and issues these messages in
the Command Window:

Welcome to the utility for setting up the MATLAB Notebook
for interfacing MATLAB to Microsoft Word

Setup complete

When MATLAB configures the software, it:

1 Accesses the Microsoft Windows system registry to locate Microsoft Word
and the Word templates folder. It also identifies the version of Word.

18-56

Create a MATLAB® Notebook with Microsoft® Word

2 Copies the m-book.dot template to the Word templates folder.

The MATLAB Notebook software supports Word versions 2002, 2003, 2007,
and 2010.

After you configure the software, typing notebook in the MATLAB Command
Window starts Microsoft Word and creates a new MATLAB Notebook.

If you suspect a problem with the current configuration, you can explicitly
reconfigure the software by typing:

notebook -setup

Concepts • “Options for Presenting Your Code” on page 18-2
• “Publishing MATLAB Code” on page 18-6

18-57

18 Presenting MATLAB® Code

18-58

19

Coding and Productivity
Tips

• “Open and Save Files” on page 19-2

• “Check Code for Errors and Warnings” on page 19-7

• “Improve Code Readability” on page 19-23

• “Find and Replace Text in Files” on page 19-30

• “Go To Location in File” on page 19-35

• “Display Two Parts of a File Simultaneously” on page 19-42

• “Add Reminders to Files” on page 19-45

• “Colors in the MATLAB Editor” on page 19-49

• “Code Contains %#ok — What Does That Mean?” on page 19-51

• “MATLAB Code Analyzer Report” on page 19-52

• “Change Default Editor” on page 19-56

19 Coding and Productivity Tips

Open and Save Files

In this section...

“Open Existing Files” on page 19-2

“Save Files” on page 19-4

Open Existing Files
To open an existing file or files in the Editor, choose the option that achieves
your goals, as described in this table.

Goal Steps Additional Information

Open with associated
tool

Open a file using the
appropriate MATLAB
tool for the file type.

On the Editor (or Home) tab, in the
File section, click

For example, this option
opens a file with a .m
extension in the Editor and
loads a MAT-file into the
Workspace browser.

Open as text file

Open a file in the Editor
as a text file, even if the
file type is associated with
another application or
tool.

On the Editor tab, in the File section,
click Open , and select Open as
Text.

This is useful, for example,
if you have imported a
tab-delimited data file
(.dat) into the workspace
and you find you want to
add a data point. Open the
file as text in the Editor,
make your addition, and
then save the file.

19-2

Open and Save Files

Goal Steps Additional Information

Open function from
within file

Open a local function or
function file from within
a file in the Editor.

Position the cursor on the name within
the open file, and then right-click
and select Open file-name from the
context menu.

You also can use this
method to open a variable
or Simulink model.

For details, see “Open a File
or Variable from Within a
File” on page 19-40.

Reopen file

Reopen a recently used
file.

At the bottom of theOpen drop-down
list, select a file under Recent Files.

To change the number of
files on the list, click
Preferences, and then
select Editor/Debugger.
UnderMost recently used
file list, change the value
for Number of entries.

Reopen files at startup

At startup, automatically
open the files that were
open when the previous
MATLAB session ended.

On the Home tab, in the
Environment section, click

Preferences and select
Editor/Debugger. Then, select
On restart reopen files from
previous MATLAB session.

None.

Open file displaying in
another tool

Open a file name
displaying in another
MATLAB desktop tool or
Microsoft tool.

Drag the file from the other tool into
the Editor.

For example, drag files from
the Current Folder browser
or from Windows Explorer.

Open file using a
function

Use the edit or open function. For example, type
the following to open
collatz.m:

edit collatz.m

If collatz.m is not on the
search path or in the current

19-3

19 Coding and Productivity Tips

Goal Steps Additional Information

folder, use the relative or
absolute path for the file.

For special considerations on the Macintosh platform, see “Navigating Within
the MATLAB Root Folder on Macintosh Platforms”.

Save Files

After you modify a file in the Editor, an asterisk (*) follows the file name. This
asterisk indicates that there are unsaved changes to the file.

You can perform four different types of save operations, which have various
effects, as described in this table.

Save Option Steps

Save file to disk and keep file open
in the Editor.

On the Editor tab, in the File section,
click .

Rename file, save it to disk,
and make it the active Editor
document. Original file remains
unchanged on disk.

1 On the Editor tab, in the File
section, click Save and select Save
As.

2 Specify a new name, type, or both
for the file, and then click Save.

Save file to disk under new name.
Original file remains open and
unsaved.

1 On the Editor tab, in the File
section, click Save and select Save
Copy As.

MATLAB opens the Select File for
Backup dialog box.

2 Specify a name and type for the
backup file, and then click Save.

19-4

Open and Save Files

Save Option Steps

Save changes to all open files
using current file names.

All files remain open.

1 On the Editor tab, in the File
section, click Save and select Save
All.

MATLAB opens the Select File for
Save As dialog box for the first
unnamed file.

2 Specify a name and type for any
unnamed file, and then click Save.

3 Repeat step 2 until all unnamed files
are saved.

Recommendations on Saving Files
MathWorks recommends that you save files you create and files from
MathWorks that you edit to a folder that is not in the matlabroot/toolbox
folder tree, where matlabroot is the folder returned when you type
matlabroot in the Command Window. If you keep your files in
matlabroot/toolbox folders, they can be overwritten when you install a
new version of MATLAB software.

At the beginning of each MATLAB session, MATLAB loads and caches
in memory the locations of files in the matlabroot/toolbox folder tree.
Therefore, if you:

• Save files to matlabroot/toolbox folders using an external editor, run
rehash toolbox before you use the files in the current session.

• Add or remove files from matlabroot/toolbox folders using file system
operations, run rehash toolbox before you use the files in the current
session.

• Modify existing files in matlabroot/toolbox folders using an external
editor, run clear function-name before you use these files in the current
session.

19-5

19 Coding and Productivity Tips

For more information, see rehash or “Toolbox Path Caching in MATLAB”.

Autosaving Files
When you modify a file in the Editor, the Editor saves a copy of the file using
the same file name but with an .asv extension every 5 minutes. The autosave
version is useful if you have system problems and lose changes you made to
your file. In that event, you can open the autosave version, filename.asv,
and then save it as filename.m to use the last good version of filename.

To select preferences, click Preferences, and then select Autosave on the
Home tab, in the Environment section. You can then:

• Turn the autosave feature on or off.

• Automatically delete autosave files when you close the corresponding
source file.

By default, MATLAB automatically deletes autosave files when you close
the Editor. It is best to keep autosave-to-file relationships clear and
current. Therefore, when you rename or remove a file, consider deleting or
renaming the corresponding autosave file.

• Specify the number of minutes between automatic saves.

• Specify the file extension for autosave files.

• Specify a location for autosave files

If you edit a file in a read-only folder and the autosave Location preference
is Source file directories, then the Editor does not create an autosave
copy of the file.

19-6

Check Code for Errors and Warnings

Check Code for Errors and Warnings
MATLAB Code Analyzer can automatically check your code for coding
problems, as described in the following sections:

In this section...

“Automatically Check Code in the Editor — Code Analyzer” on page 19-7

“Create a Code Analyzer Message Report” on page 19-12

“Adjust Code Analyzer Message Indicators and Messages” on page 19-13

“Understand Code Containing Suppressed Messages” on page 19-17

“Understand the Limitations of Code Analysis” on page 19-18

“Enable MATLAB Compiler Deployment Messages” on page 19-22

Automatically Check Code in the Editor — Code
Analyzer
You can view warning and error messages about your code, and modify
your file based on the messages. The messages update automatically and
continuously so you can see if your changes addressed the issues noted in
the messages. Some messages offer additional information, automatic code
correction, or both.

To use continuous code checking in a MATLAB code file in the Editor:

1 On the Home tab, in the Environment section, click Preferences.

2 Select Code Analyzer, and then select the Enable integrated warning
and error messages check box.

3 Set the Underlining option to Underline warnings and errors, and
then click OK.

4 Open a MATLAB code file in the Editor. This example uses the sample file
lengthofline.m that ships with the MATLAB software:

a Open the example file:

19-7

19 Coding and Productivity Tips

open(fullfile(matlabroot,'help','techdoc','matlab_env',...
'examples','lengthofline.m'))

b Save the example file to a folder to which you have write access. For the
example, lengthofline.m is saved to C:\my_MATLAB_files.

5 Examine the message indicator at the top of the message bar to see the
Code Analyzer messages reported for the file:

• Red indicates syntax errors were detected. Another way to detect some
of these errors is using syntax highlighting to identify unterminated
strings, and delimiter matching to identify unmatched keywords,
parentheses, braces, and brackets.

• Orange indicates warnings or opportunities for improvement, but no
errors, were detected.

• Green indicates no errors, warnings, or opportunities for improvement
were detected.

In this example, the indicator is red, meaning that there is at least one
error in the file.

6 Click the message indicator to go to the next code fragment containing a
message. The next code fragment is relative to the current cursor position,
viewable in the status bar.

19-8

Check Code for Errors and Warnings

In the lengthofline example, the first message is at line 22. The cursor
moves to the beginning of line 22.

The code fragment for which there is a message is underlined in either red
for errors or orange for warnings and improvement opportunities.

7 View the message by moving the mouse pointer within the underlined
code fragment.

The message opens in a tooltip and contains a Details button that provides
access to additional information by extending the message. Not all
messages have additional information.

8 Click the Details button.

The window expands to display an explanation and user action.

9 Modify your code, if needed.

The message indicator and underlining automatically update to reflect
changes you make, even if you do not save the file.

10 On line 28, hover over prod.

The code is underlined because there is a warning message, and it is
highlighted because an automatic fix is available. When you view the
message, it provides a button to apply the automatic fix.

19-9

19 Coding and Productivity Tips

11 Fix the problem by doing one of the following:

• If you know what the fix is (from previous experience), click Fix.

• If you are unfamiliar with the fix, view, and then apply it as follows:

a Right-click the highlighted code (for a single-button mouse, press
Ctrl+ click), and then view the first item in the context menu.

b Click the fix.

MATLAB automatically corrects the code.

In this example, MATLAB replaces prod(size(hline)) with
numel(hline).

12 Go to a different message by doing one of the following:

• To go to the next message, click the message indicator or the next
underlined code fragment.

• To go to a line that a marker represents, click a red or orange line in the
indicator bar .

To see the first error in lengthofline, click the first red marker in the
message bar. The cursor moves to the first suspect code fragment in line
48. The Details and Fix buttons are dimmed, indicating that there is no
more information about this message and there is no automatic fix.

19-10

Check Code for Errors and Warnings

Multiple messages can represent a single problem or multiple problems.
Addressing one might address all of them, or after addressing one, the
other messages might change or what you need to do might become
clearer.

13 Modify the code to address the problem noted in the message—the message
indicators update automatically.

The message suggests a delimiter imbalance on line 48. You can investigate
that as follows:

a On the Home tab, in the Environment section, click Preferences.

b Select Keyboard.

c Under Delimiter Matching, select Match on arrow key, and then
click OK.

d In the Editor, move the arrow key over each of the delimiters to see if
MATLAB indicates a mismatch.

In the example, it might appear that there are no mismatched
delimiters. However, code analysis detects the semicolon in parentheses:
data{3}(;), and interprets it as the end of a statement. The message
reports that the two statements on line 48 each have a delimiter
imbalance.

e In line 48, change data{3}(;) to data{3}(:).

Now, the underline no longer appears in line 48. The single change
addresses the issues in both of the messages for line 48.

19-11

19 Coding and Productivity Tips

Because the change removed the only error in the file, the message
indicator at the top of the bar changes from red to orange, indicating that
only warnings and potential improvements remain.

After modifying the code to address all the messages, or disabling designated
messages, the message indicator becomes green. The example file with all
messages addressed has been saved as lengthofline2.m. Open the corrected
example file with the command:

open(fullfile(matlabroot,'help','techdoc',...
'matlab_env', 'examples','lengthofline2.m'))

Create a Code Analyzer Message Report
You can create a report of messages for an individual file, or for all files in a
folder, using one of these methods:

• Run a report for an individual MATLAB code file:

1 On the Editor window, click .

2 Select Show Code Analyzer Report.

A Code Analyzer Report appears in the MATLAB Web Browser.

3 Modify your file based on the messages in the report.

4 Save the file.

5 Rerun the report to see if your changes addressed the issues noted in
the messages.

• Run a report for all files in a folder:

1 On the Current Folder browser, click .

2 Select Reports > Code Analyzer Report.

3 Modify your files based on the messages in the report.

For details, see “MATLAB Code Analyzer Report” on page 19-52.

4 Save the modified file(s).

5 Rerun the report to see if your changes addressed the issues noted in
the messages.

19-12

Check Code for Errors and Warnings

Adjust Code Analyzer Message Indicators and
Messages
Depending on the stage at which you are in completing a MATLAB file, you
might want to restrict the code underlining. You can do this by using the
Code Analyzer preference referred to in step 1, in “Check Code for Errors and
Warnings” on page 19-7. For example, when first coding, you might prefer to
underline only errors because warnings would be distracting.

Code analysis does not provide perfect information about every situation and
in some cases, you might not want to change the code based on a message. If
you do not want to change the code, and you do not want to see the indicator
and message for that line, suppress them. For the lengthofline example,
in line 49, the first message is Terminate statement with semicolon to
suppress output (in functions). Adding a semicolon to the end of a
statement suppresses output and is a common practice. Code analysis alerts
you to lines that produce output, but lack the terminating semicolon. If you
want to view output from line 49, do not add the semicolon as the message
suggests.

There are a few different ways to suppress (turn off) the indicators for
warning and error messages:

• “Suppress an Instance of a Message in the Current File” on page 19-13

• “Suppress All Instances of a Message in the Current File” on page 19-14

• “Suppress All Instances of a Message in All Files” on page 19-15

• “Save and Reuse Code Analyzer Message Settings” on page 19-15

You cannot suppress error messages such as syntax errors. Therefore,
instructions on suppressing messages do not apply to those types of messages.

Suppress an Instance of a Message in the Current File
You can suppress a specific instance of a Code Analyzer message in the
current file. For example, using the code presented in “Check Code for Errors
and Warnings” on page 19-7 , follow these steps:

1 In line 49, right-click at the first underline (for a single-button mouse,
press Ctrl+click).

19-13

19 Coding and Productivity Tips

2 From the context menu, select Suppress ’Terminate statement with
semicolon...’ > On This Line.

The comment %#ok<NOPRT> appears at the end of the line, which instructs
MATLAB not to check for a terminating semicolon at that line. The
underline and mark in the indicator bar for that message disappear.

3 If there are two messages on a line that you do not want to display,
right-click separately at each underline and select the appropriate entry
from the context menu.

The %#ok syntax expands. For the example, in the code presented in “Check
Code for Errors and Warnings” on page 19-7, ignoring both messages for
line 49 adds %#ok<NBRAK,NOPRT>.

Even if Code Analyzer preferences are set to enable this message, the
specific instance of the message suppressed in this way does not appear
because the %#ok takes precedence over the preference setting. If you later
decide you want to check for a terminating semicolon at that line, delete
the %#ok<NOPRT> string from the line.

Suppress All Instances of a Message in the Current File
You can suppress all instances of a specific Code Analyzer message in the
current file. For example, using the code presented in “Check Code for Errors
and Warnings” on page 19-7, follow these steps:

1 In line 49, right-click at the first underline (for a single-button mouse,
press Ctrl+click).

2 From the context menu, select Suppress ’Terminate statement with
semicolon...’ > In This File.

The comment %#ok<*NOPRT> appears at the end of the line, which instructs
MATLAB to not check for a terminating semicolon throughout the file. All
underlines, as well as marks in the message indicator bar that correspond
to this message disappear.

If there are two messages on a line that you do not want to display anywhere
in the current file, right-click separately at each underline, and then select
the appropriate entry from the context menu. The %#ok syntax expands. For

19-14

Check Code for Errors and Warnings

the example, in the code presented in “Check Code for Errors and Warnings”
on page 19-7, ignoring both messages for line 49 adds %#ok<*NBRAK,*NOPRT>.

Even if Code Analyzer preferences are set to enable this message, the message
does not appear because the %#ok takes precedence over the preference
setting. If you later decide you want to check for a terminating semicolon in
the file, delete the %#ok<*NOPRT> string from the line.

Suppress All Instances of a Message in All Files
You can disable all instances of a Code Analyzer message in all files. For
example, using the code presented in “Check Code for Errors and Warnings”
on page 19-7, follow these steps:

1 In line 49, right-click at the first underline (for a single-button mouse,
press Ctrl+click).

2 From the context menu, select Suppress ’Terminate statement with
semicolon...’ > In All Files.

This modifies the Code Analyzer preference setting.

If you know which message or messages you want to suppress, you can disable
them directly using Code Analyzer preferences, as follows:

1 On the Home tab, in the Environment section, click Preferences.

2 Select Code Analyzer.

3 Search the messages to find the ones you want to suppress.

4 Clear the check box associated with each message you want to suppress in
all files.

5 Click OK.

Save and Reuse Code Analyzer Message Settings
You can specify that you want certain Code Analyzer messages enabled
or disabled, and then save those settings to a file. When you want to use
a settings file with a particular file, you select it from the Code Analyzer

19-15

19 Coding and Productivity Tips

preferences pane. That setting file remains in effect until you select another
settings file. Typically, you change the settings file when you have a subset of
files for which you want to use a particular settings file.

Follow these steps:

1 On the Home tab, in the Environment section, click Preferences.

The Preferences dialog box opens.

2 Select Code Analyzer.

3 Enable or disable specific messages, or categories of messages.

4 Click the Actions button , select Save as, and then save the settings
to a txt file.

5 Click OK.

You can reuse these settings for any MATLAB file, or provide the settings file
to another user.

To use the saved settings:

1 On the Home tab, in the Environment section, click Preferences.

The Preferences dialog box opens.

2 Select Code Analyzer.

3 Use the Active Settings drop-down list to select Browse....

The Open dialog box appears.

4 Choose from any of your settings files.

The settings you choose are in effect for all MATLAB files until you select
another set of Code Analyzer settings.

19-16

Check Code for Errors and Warnings

Understand Code Containing Suppressed Messages
If you receive code that contains suppressed messages, you might want to
review those messages without the need to unsuppress them first. A message
might be in a suppressed state for any of the following reasons:

• One or more %#ok<message-ID> directives are on a line of code that elicits
a message specified by <message-ID>.

• One or more %#ok<*message-ID> directives are in a file that elicits a
message specified by <message-ID>.

• It is cleared in the Code Analyzer preferences pane.

• It is disabled by default.

To determine the reasons why some messages are suppressed:

1 Search the file for the %#ok directive and create a list of all the message
IDs associated with that directive.

2 On the Home tab, in the Environment section, click Preferences.

The Preferences dialog box opens.

3 Select Code Analyzer.

4 In the search field, type msgid: followed by one of the message IDs, if any,
you found in step 1.

The message list now contains only the message that corresponds to
that ID. If the message is a hyperlink, click it to see an explanation and
suggested action for the message. This can provide insight into why the
message is suppressed or disabled. The following image shows how the
Preferences dialog box appears when you enter msgid:CPROP in the search
field.

19-17

19 Coding and Productivity Tips

5 Click the button to clear the search field, and then repeat step 4 for
each message ID you found in step 1.

6 Display messages that are disabled by default and disabled in the
Preferences pane by clicking the down arrow to the right of the search field.
Then, click Show Disabled Messages.

7 Review the message associated with each message ID to understand why it
is suppressed in the code or disabled in Preferences.

Understand the Limitations of Code Analysis
Code analysis is a valuable tool, but there are some limitations:

• Sometimes, it fails to produce Code Analyzer messages where you expect
them.

By design, code analysis attempts to minimize the number of incorrect
messages it returns, even if this behavior allows some issues to go
undetected.

• Sometimes, it produces messages that do not apply to your situation.

When provided with message, click the Detail button for additional
information, which can help you to make this determination. Error
messages are almost always problems. However, many warnings are

19-18

Check Code for Errors and Warnings

suggestions to look at something in the code that is unusual and therefore
suspect, but might be correct in your case.

Suppress a warning message if you are certain that the message does not
apply to your situation. If your reason for suppressing a message is subtle
or obscure, include a comment giving the rationale. That way, those who
read your code are aware of the situation.

For details, see “Adjust Code Analyzer Message Indicators and Messages”
on page 19-13.

These sections describe code analysis limitations with respect to the following:

• “Distinguish Function Names from Variable Names” on page 19-19

• “Distinguish Structures from Handle Objects” on page 19-20

• “Distinguish Built-In Functions from Overloaded Functions” on page 19-21

• “Determine the Size or Shape of Variables” on page 19-21

• “Analyze Class Definitions with Superclasses” on page 19-21

• “Analyze Class Methods” on page 19-21

Distinguish Function Names from Variable Names
Code analysis cannot always distinguish function names from variable names.
For the following code, if the Code Analyzer message is enabled, code analysis
returns the message, Code Analyzer cannot determine whether xyz is a
variable or a function, and assumes it is a function. Code analysis
cannot make a determination because xyz has no obvious value assigned to
it. However, the program might have placed the value in the workspace in a
way that code analysis cannot detect.

function y=foo(x)
.
.
.
y = xyz(x);

end

19-19

19 Coding and Productivity Tips

For example, in the following code, xyz can be a function, or can be a
variable loaded from the MAT-file. Code analysis has no way of making
a determination.

function y=foo(x)
load abc.mat
y = xyz(x);

end

Variables might also be undetected by code analysis when you use the eval,
evalc, evalin, or assignin functions.

If code analysis mistakes a variable for a function, do one of the following:

• Initialize the variable so that code analysis does not treat it as a function.

• For the load function, specify the variable name explicitly in the load
command line. For example:

function y=foo(x)
load abc.mat xyz
y = xyz(x);

end

Distinguish Structures from Handle Objects
Code analysis cannot always distinguish structures from handle objects. In
the following code, if x is a structure, you might expect a Code Analyzer
message indicating that the code never uses the updated value of the
structure. If x is a handle object, however, then this code can be correct.

function foo(x)
x.a = 3;

end

Code analysis cannot determine whether x is a structure or a handle object. To
minimize the number of incorrect messages, code analysis returns no message
for the previous code, even though it might contain a subtle and serious bug.

19-20

Check Code for Errors and Warnings

Distinguish Built-In Functions from Overloaded Functions
Code analysis does not use the MATLAB path information because it can be
different, depending on whether you are editing or running the program. If
some built-in functions are overloaded in a class or on the path, Code Analyzer
messages might apply to the built-in function, but not to the overloaded
function you are calling. In this case, suppress the message on the line where
it appears or suppress it for the entire file.

For information on suppressing messages, see “Adjust Code Analyzer Message
Indicators and Messages” on page 19-13.

Determine the Size or Shape of Variables
Code analysis has a limited ability to determine the type of variables and
the shape of matrixes. Code analysis might produce messages that are
appropriate for the most common case, such as for vectors. However, these
messages might be inappropriate for less common cases, such as for matrixes.

Analyze Class Definitions with Superclasses
Because code analysis looks at one file at a time and does not use the path, it
has no way to analyze superclasses. Therefore, the amount of checking that
code analysis can provide for a class definition with superclasses is limited.
In general, code analysis cannot always tell whether the class is a handle
class. It makes an educated guess, but often cannot get enough information,
to make a determination for certain.

Analyze Class Methods
Most class methods must contain at least one argument that is an object of
the same class as the method. But it does not always have to be the first
argument. When it is, code analysis can determine that an argument is an
object of the class you are defining, and it can do various checks. For example,
it can check that the property and method names exist and are spelled
correctly. However, when code analysis cannot determine that an object is an
argument of the class you are defining, then it cannot provide these checks.

19-21

19 Coding and Productivity Tips

Enable MATLAB Compiler Deployment Messages
You can switch between showing or hiding Compiler deployment messages
when you work on a file. Change the Code Analyzer preference for this
message category. Your choice likely depends on whether you are working
on a file to be deployed. When you change the preference, it also changes the
setting in the Editor. The converse is also true—when you change the setting
from the Editor, it effectively changes this preference. However, if the dialog
box is open at the time you modify the setting in the Editor, you will not see
the changes reflected in the Preferences dialog box . Whether you change the
setting from the Editor or from the Preferences dialog box, it applies to the
Editor and to the Code Analyzer Report.

To enable MATLAB Compiler™ deployment messages:

1 On the Home tab, in the Environment section, click Preferences.

The Preferences dialog box opens.

2 Select Code Analyzer.

3 Click the down arrow next to the search field, and then select Show
Messages in Category > MATLAB Compiler (Deployment) Messages.

4 Click the Enable Category button.

5 Clear individual messages that you do not want to display for your code
(if any).

6 Decide if you want to save these settings, so you can reuse them next time
you work on a file to be deployed.

The settings txt file, which you can create as described in “Save and Reuse
Code Analyzer Message Settings” on page 19-15, includes the status of this
setting.

19-22

Improve Code Readability

Improve Code Readability

In this section...

“Indenting Code” on page 19-23

“Right-Side Text Limit Indicator” on page 19-25

“Code Folding — Expand and Collapse Code Constructs” on page 19-25

Indenting Code
Indenting code makes reading statements such as while loops easier. To set
and apply indenting preferences to code in the Editor:

1 On the Home tab, in the Environment section, click Preferences.

The Preferences dialog box opens.

2 Select Editor/Debugger > Language.

3 Choose a computer language from the Language drop-down list.

4 In the Indenting section, select or clear Apply smart indenting while
typing, depending on whether you want indenting applied automatically,
as you type.

If you clear this option, you can manually apply indenting by selecting
the lines in the Editor to indent, right-clicking, and then selecting Smart
Indent from the context menu.

5 Do one of the following:

• If you chose any language other thanMATLAB in step 2, click OK.

• If you choseMATLAB in step 2, select a Function indenting format,
and then click OK. Function indent formats are:

– Classic — The Editor aligns the function code with the function
declaration.

– Indent nested functions — The Editor indents the function code
within a nested function.

19-23

19 Coding and Productivity Tips

– Indent all functions — The Editor indents the function code for
both main and nested functions.

The following image illustrates the function indenting formats.

Note Indenting preferences are not available for TLC, VHDL, or Verilog.

Regardless of whether you apply indenting automatically or manually, you can
move selected lines further to the left or right, by doing one of the following:

• On the Editor tab, in the Edit section, click , , or .

• Pressing the Tab key or the Shift+Tab key, respectively.

This works differently if you select the Editor/Debugger Tab preference for
Emacs-style Tab key smart indenting—when you position the cursor in

19-24

Improve Code Readability

any line or select a group of lines and press Tab, the lines indent according
to smart indenting practices.

Right-Side Text Limit Indicator
By default, a light gray vertical line (rule) appears at column 75 in the Editor,
indicating where a line exceeds 75 characters. You can set this text limit
indicator to another value, which is useful, for example, if you want to view
the code in another text editor that has a different line width limit.

To hide, or change the appearance of the vertical line:

1 On the Home tab, in the Environment section, click Preferences.

The Preferences dialog box opens.

2 Select Editor/Debugger > Display.

3 Adjust the settings in the Right-hand text limit section.

Note This limit is a visual cue only and does not prevent text from
exceeding the limit. To wrap comment text at a specified column number
automatically, adjust the settings in the Comment formatting section under
Editor/Debugger > Language in the Preferences dialog box.

Code Folding — Expand and Collapse Code Constructs
Code folding is the ability to expand and collapse certain MATLAB
programming constructs. This improves readability when a file contains
numerous functions or other blocks of code that you want to hide when you
are not currently working with that part of the file. MATLAB programming
constructs include:

• Code sections for running and publishing code

• Class code

• For and parfor blocks

• Function and class help

19-25

19 Coding and Productivity Tips

• Function code

To see the entire list of constructs, select Editor/Debugger > Code Folding
in the Preferences dialog box.

To expand or collapse code, click the plus or minus sign that appears to
the left of the construct in the Editor.

To expand or collapse all of the code in a file, place your cursor anywhere
within the file, right-click, and then select Code Folding > Expand All or
Code Folding > Fold All from the context menu.

View Folded Code in a Tooltip
You can view code that is currently folded by positioning the pointer over its

ellipsis . The code appears in a tooltip.

The following image shows the tooltip that appears when you place the pointer
over the ellipsis on line 23 of lenghtofline.m when a for loop is folded.

Print Files with Collapsed Code
If you print a file with one or more collapsed constructs, those constructs are
expanded in the printed version of the file.

Code Folding Behavior for Functions that Have No Explicit End
Statement
If you enable code folding for functions and a function in your code does not
end with an explicit end statement, you see the following behavior:

19-26

Improve Code Readability

• If a line containing only comments appears at the end of such a function,
then the Editor does not include that line when folding the function.
MATLAB does not include trailing white space and comments in a function
definition that has no explicit end statement.

Code Folding Enabled for Function Code Only on page 19-27 illustrates this
behavior. Line 13 is excluded from the fold for the foo function.

• If a fold for a code section overlaps the function code, then the Editor does
not show the fold for the overlapping section.

The three figures that follow illustrate this behavior. The first two figures,
Code Folding Enabled for Function Code Only on page 19-27 and Code
Folding Enabled for Cells Only on page 19-28 illustrate how the code folding
appears when you enable it for function code only and then section only,
respectively. The last figure, Code Folding Enabled for Both Functions and
Cells on page 19-29, illustrates the effects when code folding is enabled
for both. Because the fold for section 3 (lines 11–13) overlaps the fold for
function foo (lines 4–12), the Editor does not display the fold for section 3.

Code Folding Enabled for Function Code Only

19-27

19 Coding and Productivity Tips

Code Folding Enabled for Cells Only

19-28

Improve Code Readability

Code Folding Enabled for Both Functions and Cells

19-29

19 Coding and Productivity Tips

Find and Replace Text in Files

In this section...

“Find Any Text in the Current File” on page 19-30

“Find and Replace Functions or Variables in the Current File” on page 19-30

“Automatically Rename All Functions or Variables in a File” on page 19-32

“Find and Replace Any Text” on page 19-34

“Find Text in Multiple File Names or Files” on page 19-34

“Function Alternative for Finding Text” on page 19-34

“Perform an Incremental Search in the Editor” on page 19-34

Find Any Text in the Current File

1 Within the current file, select the text you want to find.

2 On the Editor tab, in the Navigate section, click Find , and then
select Find....

A Find & Replace dialog box opens.

3 Click Find Next to continue finding more occurrences of the text.

To find the previous occurrence of selected text (find backwards) in the
current file, click Find Previous on the Find & Replace dialog box.

Find and Replace Functions or Variables in the
Current File
To search for references to a particular function or variable, use the automatic
highlighting feature for variables and functions. This feature is more efficient
than using the text finding tools. Function and variable highlighting indicates
only references to a particular function or variable, not other occurrences.
For instance, it does not find instances of the function or variable name in
comments. Furthermore, variable highlighting only includes references to

19-30

Find and Replace Text in Files

the same variable. That is, if two variables use the same name, but are in
different scopes, highlighting one does not cause the other to highlight.

1 On the Home tab, in the Environment section, click Preferences.

The Preferences dialog box opens.

2 Select Colors > Programming Tools.

3 Under Variable and function colors, select Automatically highlight,
deselect Variables with shared scope, and then click Apply.

4 In a file open in the Editor, click an instance of the variable you want to
find throughout the file.

MATLAB indicates all occurrences of that variable within the file by:

• Highlighting them in teal blue (by default) throughout the file

• Adding a marker for each in the indicator bar

If a code analyzer indicator and a variable indicator appear on the same
line in a file, the marker for the variable takes precedence.

5 Hover over a marker in the indicator bar to see the line it represents.

6 Click a marker in the indicator bar to navigate to that occurrence of the
variable.

Replace an instance of a function or variable by editing the occurrence at a
line to which you have navigated.

The following image shows an example of how the Editor looks with variable
highlighting enabled. In this image, the variable i appears highlighted in sky
blue, and the indicator bar contains three variable markers.

19-31

19 Coding and Productivity Tips

Automatically Rename All Functions or Variables in
a File
To help prevent typographical errors, MATLAB provides a feature that helps
rename multiple references to a function or variable within a file when you
manually change any of the following:

Function or Variable Renamed Example

Function name in a function
declaration

Rename foo in: function foo(m)

Input or output variable name in a
function declaration

Rename y or m in: function y =
foo(m)

Variable name on the left side of
assignment statement

Rename y in: y = 1

As you rename such a function or variable, a tooltip opens if there is more
than one reference to that variable or function in the file. The tooltip indicates

19-32

Find and Replace Text in Files

that MATLAB will rename all instances of the function or variable in the
file when you press Shift + Enter.

Typically, multiple references to a function appear when you use nested
functions or local functions.

Note MATLAB does not prompt you when you change:

• The name of a global variable.

• The function input and output arguments, varargin and varargout.

To undo automatic name changes, click once.

By default, this feature is enabled. To disable it:

1 On the Home tab, in the Environment section, click Preferences.

19-33

19 Coding and Productivity Tips

The Preferences dialog box opens.

2 Select Editor/Debugger > Language.

3 In the Language field, select MATLAB.

4 Clear Enable automatic variable and function renaming.

Find and Replace Any Text
You can search for, and optionally replace specified text within a file. On
the Editor tab, in the Navigate section, click Find to open and use the
Find & Replace dialog box.

Find Text in Multiple File Names or Files
You can find folders and file names that include specified text, or whose
contents contain specified text. On the Editor tab, in the File section, click

Find Files to open the Find Files dialog box. For details, see “Finding
Files and Folders”.

Function Alternative for Finding Text
Use lookfor to search for the specified text in the first line of help for all files
with the .m extension on the search path.

Perform an Incremental Search in the Editor
When you perform an incremental search, the cursor moves to the next or
previous occurrence of the specified text in the current file. It is similar to
the Emacs search feature. In the Editor, incremental search uses the same
controls as incremental search in the Command Window. For details, see
“Incremental Search Using Keyboard Shortcuts”.

19-34

Go To Location in File

Go To Location in File

In this section...

“Navigate to a Specific Location” on page 19-35

“Set Bookmarks” on page 19-39

“Navigate Backward and Forward in Files” on page 19-39

“Open a File or Variable from Within a File” on page 19-40

Navigate to a Specific Location
This table summarizes the steps for navigating to a specific location within
a file open in the Editor. In some cases, different sets of steps are available
for navigating to a particular location. Choose the set that works best with
your workflow.

Go To Steps Notes

Line Number
1 On the Editor tab, in the
Navigate section, click Go To

2 Select Go to Line...

3 Specify the line to which you want
to navigate.

None

1 On the Editor tab, in the
Navigate section, click Go To
.

2 Under the heading Function,
select the local function or nested
function to which you want to
navigate.

Includes local functions and nested
functions

For both class and function files,
the functions list in alphabetical
order—except that in function files,
the name of the main function
always appears at the top of the list.

Function
definition

19-35

19 Coding and Productivity Tips

Go To Steps Notes

1 In the Current Folder browser,
click the name of the file open in
the Editor.

2 Click the up arrow at the
bottom of Current Folder browser
to open the detail panel.

3 In the detail panel, double-click
the function icon corresponding
to the title of the function or local
function to which you want to
navigate.

Functions list in order of appearance
within your file.

19-36

Go To Location in File

Go To Steps Notes

Function
reference 1 Click in any instance of the

function name.

2 Press Alt+Up or Alt+Down to go
to the next or previous function
reference, respectively.

Variable
reference 1 Click in any instance of the

variable name.

2 Press Alt+Up or Alt+Down to go
to the next or previous variable
reference, respectively.

Code Analyzer
Message

Press Alt+Up or Alt+Down to go to
the next or previous code analyzer
message, respectively.

Alt+Up and Alt+Down are the
default keyboard shortcuts for
the actions Go to Previous
Underline or Highlight and Go
to Next Underline or Highlight,
respectively.

For more information, see “Define
Keyboard Shortcuts”.

1 On the Editor tab, in the
Navigate section, click Go To
.

2 Under Sections, select the title
of the code section to which you
want to navigate.

Code Section 1 In the Current Folder browser,
click the name of the file that is
open in the Editor.

2 Click the up arrow at the
bottom of Current Folder browser
to open the detail panel.

3 In the detail panel, double-click
the section icon corresponding

For more information, see “Divide
Your File into Code Sections” on
page 14-6

19-37

19 Coding and Productivity Tips

Go To Steps Notes

to the title of the section to which
you want to navigate.

Property
1 In the Current Folder browser,
click the name of the file that is
open in the Editor.

2 Click the up arrow at the
bottom of Current Folder browser
to open the detail panel.

3 On the detail panel, double-click
the property icon corresponding
to the name of the property to
which you want to navigate.

For more information, see “How to
Use Properties”

Method
1 In the Current Folder browser,
click the name of the file that is
open in the Editor.

2 Click the up arrow at the
bottom of Current Folder browser
to open the detail panel.

3 In the detail panel, double-click
the icon corresponding to the
name of the method to which you
want to navigate.

For more information, see “How to
Use Methods”

Bookmark
1 On the Editor tab, in the
Navigate section, click Go To
.

2 Under Bookmarks, select the
bookmark to which you want to
navigate.

For information on setting and
clearing bookmarks, see “Set
Bookmarks” on page 19-39.

19-38

Go To Location in File

Set Bookmarks
You can set a bookmark at any line in a file in the Editor so you can quickly
navigate to the bookmarked line. This is particularly useful in long files. For
example, suppose while working on a line, you want to look at another part of
the file, and then return. Set a bookmark at the current line, go to the other
part of the file, and then use the bookmark to return.

To set a bookmark:

1 Position the cursor anywhere on the line.

2 On the Editor tab, in the Navigate section, click Go To .

3 Under Bookmarks, select Set/Clear

A bookmark icon appears to the left of the line.

To clear a bookmark, position the cursor anywhere on the line. Click Go
To and select Set/Clear under Bookmarks.

MATLAB does not maintain bookmarks after you close a file.

Navigate Backward and Forward in Files
To access lines in a file in the same sequence that you previously navigated or
edited them, use and

Interrupting the Sequence of Go Back and Go Forward
The back and forward sequence is interrupted if you:

1 Click .

2 Click .

3 Edit a line or navigate to another line using the list of features described in
“Navigate to a Specific Location” on page 19-35.

You can still go to the lines preceding the interruption point in the sequence,
but you cannot go to any lines after that point. Any lines you edit or navigate

19-39

19 Coding and Productivity Tips

to after interrupting the sequence are added to the sequence after the
interruption point.

For example:

1 Open a file.

2 Edit line 2, line 4, and line 6.

3 Click to return to line 4, and then to return to line 2.

4 Click to return to lines 4 and 6.

5 Click to return to line 1.

6 Edit at 3.

This interrupts the sequence. You can no longer use to return to lines 4
and 6. You can, however, click to return to line 1.

Open a File or Variable from Within a File
You can open a function, file, variable, or Simulink model from within a file in
the Editor. Position the cursor on the name, and then right-click and select
Open selection from the context menu. Based on what the selection is, the
Editor performs a different action, as described in this table.

Item Action

Local function Navigates to the local function within the current
file, if that file is a MATLAB code file. If no function
by that name exists in the current file, the Editor
runs the open function on the selection, which opens
the selection in the appropriate tool.

Text file Opens in the Editor.

Figure file (.fig) Opens in a figure window.

19-40

Go To Location in File

Item Action

MATLAB variable
that is in the current
workspace

Opens in the Variable Editor.

Model Opens in Simulink.

Other If the selection is some other type, Open selection
looks for a matching file in a private folder in the
current folder and performs the appropriate action.

19-41

19 Coding and Productivity Tips

Display Two Parts of a File Simultaneously
You can simultaneously display two different parts of a file in the Editor by
splitting the screen display, as shown in the image that follows. This feature
makes it easy to compare different lines in a file or to copy and paste from
one part of a file to another.

See also “Document Layout” for instructions on displaying multiple documents
simultaneously.

The following table describes the various ways you can split the Editor and
manipulate the split-screen views. When you open a document, it opens
unsplit, regardless of its split status it had when you closed it.

19-42

Display Two Parts of a File Simultaneously

Operation Instructions

Split the screen
horizontally.

Do either of the following:

• Right-click and, select Split
Screen > Top/Bottom from the Context Menu.

• If there is a vertical scroll bar, as shown in the
illustration that follows, drag the splitter bar
down.

Split the screen
vertically.

Do either of the following:

• From the Context Menu, select Split
Screen > Left/Right.

• If there is a horizontal scroll bar, as shown in
the illustration that follows, drag the splitter bar
from the left of the scroll bar.

Specify the active
view.

Do either of the following:

• From the Context Menu, select Split
Screen > Switch Focus.

• Click in the view you want to make active.

Updates you make to the document in the active
view are also visible in the other view.

Remove the splitter Do one of the following:

• Double-click the splitter.

• From the Context Menu, Split Screen > Off.

19-43

19 Coding and Productivity Tips

19-44

Add Reminders to Files

Add Reminders to Files
Annotating a file makes it easier to find areas of your code that you intend to
improve, complete, or update later.

To annotate a file, add comments with the text TODO, FIXME, or a string of
your choosing.

After you annotate several files, run the TODO/FIXME Report, to identify all
the MATLAB code files within a given folder that you have annotated.

This sample TODO/FIXME Report shows files containing the strings TODO,
FIXME, and NOTE. The search is case insensitive.

Working with TODO/FIXME Reports

1 Use the Current Folder browser to navigate to the folder containing the
files for which you want to produce a TODO/FIXME report.

19-45

19 Coding and Productivity Tips

Note You cannot run reports when the path is a UNC (Universal Naming
Convention) path; that is, a path that starts with \\. Instead, use an actual
hard drive on your system, or a mapped network drive.

2 On the Current Folder browser, click , and then select
Reports > TODO/FIXME Report.

The TODO/FIXME Report opens in the MATLAB Web Browser.

3 In the TODO/FIXME Report window, select one or more of the following to
specify the lines that you want the report to include:

• TODO

• FIXME

• The text field check box

You can then enter any text string in this field, including a regular
expression. For example, you can enter NOTE, tbd, or re.*check.

4 Run the report on the files in the current folder, by clicking Rerun This
Report.

The window refreshes and lists all lines in the MATLAB files within the
specified folder that contain the strings you selected in step 1. Matches
are not case sensitive.

If you want to run the report on a folder other than the one currently
specified in the report window, change the current folder. Then, click Run
Report on Current Folder.

To open a file in the Editor at a specific line, click the line number in the
report. Then you can change the file, as needed.

Suppose you have a file, area.m, in the current folder. The code for area.m
appears in the image that follows.

19-46

Add Reminders to Files

When you run the TODO/FIXME report on the folder containing area.m,
with the TODO and FIXME strings selected and the string NOTE specified and
selected, the report lists:

9 and rectangle. (todo)
14 Fixme: Is the area of hemisphere as below?
17 fIXME
21 NOTE: Find out from the manager if we need to include

Notice the report includes the following:

• Line 9 as a match for the TODO string. The report includes lines that have a
selected string regardless of its placement within a comment.

• Lines 14 and 17 as a match for the FIXME string. The report matches
selected strings in the file regardless of their casing.

19-47

19 Coding and Productivity Tips

• Line 21 as a match for the NOTE string. The report includes lines that have
a string specified in the text field, assuming that you select the text field.

19-48

Colors in the MATLAB® Editor

Colors in the MATLAB Editor
Colors in the Editor help you to read code, identify code elements, and
evaluate sections of code. To find out why certain portions of your code appear
in color, how to change the color, or learn more about the features highlighted
in color, see the table that follows.

Sample (Using Default Colors) What the Color Indicates

Different types of language elements, such
as keywords, comments, and strings appear
in different colors. This is called syntax
highlighting.

See also, “Syntax Highlighting”

Teal blue characters indicate variables with
shared scope

Sky blue shading indicates function or variable
names that match the name in which the
cursor is currently placed.

See also, “Check Variable Scope in Editor” on
page 15-15.

Orange and red wavy underlines indicate
warning and error conditions, respectively.

Orange shading indicates coding issues that
MATLAB can correct for you.

See also, “Check Code for Errors andWarnings”
on page 19-7

19-49

19 Coding and Productivity Tips

Sample (Using Default Colors) What the Color Indicates

Yellow highlighting indicates code sections,
which:

• Help you visually identify subsections of
code

• Enable you to publish and run subsections
of code.

See also, “Divide Your File into Code Sections”
on page 14-6

Red dots represent breakpoints, which you use
in debugging.

If you attempt to run your code, MATLAB stops
at the first breakpoint it encounters.

See also, “Debugging Process and Features” on
page 17-2

A gray vertical line indicates the location of a
particular column in the Editor that you can
use to limit line widths.

The Editor does not enforce the limit.

See also, “Right-Side Text Limit Indicator” on
page 19-25

19-50

Code Contains %#ok — What Does That Mean?

Code Contains %#ok — What Does That Mean?
If code contains the string %#ok at the end of a line of code, it indicates that
one or more Code Analyzer messages is suppressed. For more information,
see “Understand Code Containing Suppressed Messages” on page 19-17.

19-51

19 Coding and Productivity Tips

MATLAB Code Analyzer Report

In this section...

“Running the Code Analyzer Report” on page 19-52

“Changing Code Based on Code Analyzer Messages” on page 19-54

“Other Ways to Access Code Analyzer Messages” on page 19-55

Running the Code Analyzer Report
The Code Analyzer Report displays potential errors and problems, as well as
opportunities for improvement in your code through messages. For example,
a common message indicates that a variable foo might be unused.

To run the Code Analyzer Report:

1 In the Current Folder browser, navigate to the folder that contains the
files you want to check. To use the example shown in this documentation,
lengthofline.m, you can change the current folder by running

cd(fullfile(matlabroot,'help','techdoc','matlab_env','examples'))

2 If you plan to modify the example, save the file to a folder for which you
have write access. Then, make that folder the current MATLAB folder. This
example saves the file in C:\my_MATLAB_files.

3 In the Current Folder browser, click , and then select Reports > Code
Analyzer Report.

The report displays in the MATLAB Web Browser, showing those files
identified as having potential problems or opportunities for improvement.

19-52

MATLAB® Code Analyzer Report

4 For each message in the report, review the suggestion and your code. Click
the line number to open the file in the Editor at that line, and change the file
based on the message. Use the following general advice:

• If you are unsure what a message means or what to change in the code,
click the link in the message if one appears. For details, see “Check Code
for Errors and Warnings” on page 19-7.

• If the message does not contain a link, and you are unsure what a message
means or what to do, search for related topics in the Help browser. For
examples of messages and what to do about them, including specific
changes to make for the example, lengthofline.m, see “Changing Code
Based on Code Analyzer Messages” on page 19-54.

• The messages do not provide perfect information about every situation
and in some cases, you might not want to change anything based on the
message. For details, see “Understand the Limitations of Code Analysis”
on page 19-18.

• If there are certain messages or types of messages you do not want to see,
you can suppress them. For details, see “Adjust Code Analyzer Message
Indicators and Messages” on page 19-13.

19-53

19 Coding and Productivity Tips

5 After modifying it, save the file. Consider saving the file to a different name if
you made significant changes that might introduce errors. Then you can refer
to the original file, if needed, to resolve problems with the updated file. Use
the Compare button on the Editor tab to help you identify the changes
you made to the file. For more information, see “Comparing Text Files”.

6 Run and debug the file or files again to be sure that you have not introduced
any inadvertent errors.

7 If the report is displaying, click Rerun This Report to update the report
based on the changes you made to the file. Ensure that the messages are
gone, based on the changes you made to the files.

Changing Code Based on Code Analyzer Messages
For information on how to correct the potential problems presented in Code
Analyzer messages, use the following resources:

• Open the file in the Editor and click the Details button in the tooltip,
as shown in the image following this list. An extended message opens.
However, not all messages have extended messages.

• Use the Help browser Search pane to find documentation about terms
presented in the messages.

The following image shows a tooltip with a Details button. The orange
line under the equals (=) sign indicates a tooltip displays if you hover over
the equals sign. The orange highlighting indicates that an automatic fix
is available.

19-54

MATLAB® Code Analyzer Report

Other Ways to Access Code Analyzer Messages
You can get Code Analyzer messages using any of the following methods.
Each provides the same messages, but in a different format:

• Access the Code Analyzer Report for a file from the Profiler detail report.

• Run the checkcode function, which analyzes the specified file and displays
messages in the Command Window.

• Run the mlintrpt function, which runs checkcode and displays the
messages in the Web Browser.

• Use automatic code checking while you work on a file in the Editor. See
“Automatically Check Code in the Editor — Code Analyzer” on page 19-7.

19-55

19 Coding and Productivity Tips

Change Default Editor

In this section...

“Set Default Editor” on page 19-56

“Set Default Editor in '-nodisplay' mode” on page 19-56

Set Default Editor
To specify the default editor for MATLAB:

1 On the Home tab, in the Environment section, click Preferences.
The Preferences dialog box opens.

2 Select the Editor/Debugger node on the left pane.

3 In the Editor pane, click Text editor and specify a default text editor.

Set Default Editor in '-nodisplay' mode
If you invoke the edit command while running MATLAB with the
-nodisplay option, choose an appropriate text-based editor instead of the
default editor specified in the Preferences dialog box. This is done differently
depending on your platform.

Mac Platforms
When running MATLAB with the -nodisplay startup option, edit opens the
editor specified in the EDITOR environment variable.

To display the current value of $EDITOR in MATLAB, execute the command:

!printenv EDITOR

UNIX Platforms
When runningMATLABwith the -nodisplay option (or without the DISPLAY
environment variable set) on UNIX platforms, you can find the default editor
defined for your system in matlabroot/X11/app-defaults/Matlab.

19-56

Change Default Editor

You can specify the default editor or editor options by adding the following
line to your own.Xdefaults file, located in ~home:

matlab*externalEditorCommand: $EDITOR -option $FILE

where

• $EDITOR is the name of your default editor, for example, emacs. Leaving
the environment variable EDITOR as $EDITOR instruct MATLAB to use
your default system editor.

• -option is a valid option flag you can include for the specified editor.

• $FILE means the file name you type with the edit command opens in the
specified editor.

After adding the line to your.Xdefaults file, run the following before starting
MATLAB:

xrdb -merge ~home/.Xdefaults

For example, this code opens foo in the emacs editor:

emacs foo

19-57

19 Coding and Productivity Tips

19-58

20

Programming Utilities

• “Identify Program Dependencies” on page 20-2

• “Protect Your Source Code” on page 20-9

• “Create Hyperlinks that Run Functions” on page 20-12

20 Programming Utilities

Identify Program Dependencies
If you need to know what other functions and scripts your program is
dependent upon, use one of the techniques described below.

In this section...

“Simple Display of Program File Dependencies” on page 20-2

“Detailed Display of Program File Dependencies” on page 20-2

“Dependencies Within a Folder” on page 20-3

Simple Display of Program File Dependencies
For a simple display of all program files referenced by a particular function,
follow these steps:

1 Type clear functions to clear all functions from memory (see Note below).

Note clear functions does not clear functions locked by mlock. If you
have locked functions (which you can check using inmem) unlock them with
munlock, and then repeat step 1.

2 Execute the function you want to check. Note that the function arguments
you choose to use in this step are important, because you can get different
results when calling the same function with different arguments.

3 Type inmem to display all program files that were used when the function ran.
If you want to see what MEX-files were used as well, specify an additional
output:

[mfiles, mexfiles] = inmem

Detailed Display of Program File Dependencies
For a much more detailed display of dependent function information, use the
depfun function. In addition to program files, depfun shows which built-ins
and classes a particular function depends on:

20-2

Identify Program Dependencies

[list, builtins, classes] = depfun('strtok.m');

list
list =

'D:\matlabR14\toolbox\matlab\strfun\strtok.m'
'D:\matlabR14\toolbox\distcomp\toChar.m'
'D:\matlabR14\toolbox\matlab\datafun\prod.m'
'D:\matlabR14\toolbox\matlab\datatypes\@opaque\char.m'

.

.

.

Dependencies Within a Folder
The Dependency Report shows dependencies among MATLAB code files in a
folder. Use this report to determine:

• Which files in the folder are required by other files in the folder

• If any files in the current folder will fail if you delete a file

• If any called files are missing from the current folder

The report does not list:

• Files in the toolbox/matlab folder because every MATLAB user has those
files.

Therefore, if you use a function file that shadows a built-in function file,
MATLAB excludes both files from the list.

• Files called from anonymous functions.

• The superclass for a class file.

• Files called from eval, evalc, run, load, function handles, and callbacks.

MATLAB does not resolve these files until run time, and therefore the
Dependency Report cannot discover them.

• Some method files.

The Dependency Report finds class constructors that you call in a MATLAB
file. However, any methods you execute on the resulting object are
unknown to the report. These methods can exist in the classdef file, as

20-3

20 Programming Utilities

separate method files, or files belonging to superclass or superclasses of a
method file.

To provide meaningful results, the Dependency Report requires the following:

• The search path when you run the report is the same as when you run the
files in the folder. (That is, the current folder is at the top of the search
path.)

• The files in the folder for which you are running the report do not change
the search path or otherwise manipulate it.

• The files in the folder do not load variables, or otherwise create name
clashes that result in different program elements with the same name.

Note Do not use the Dependency Report to determine which MATLAB code
files someone else needs to run a particular file. Instead use the depfun
function.

Creating Dependency Reports

1 Use the Current Folder pane to navigate to the folder containing the files
for which you want to produce a Dependency Report.

Note You cannot run reports when the path is a UNC (Universal Naming
Convention) path; that is, a path that starts with \\. Instead, use an actual
hard drive on your system, or a mapped network drive.

2 On the Current Folder pane, click , and then select
Reports > Dependency Report.

The Dependency Report opens in the MATLAB Web Browser.

3 If you want, select one or more options within the report, as follows:

• To see a list of all MATLAB code files (children) called by each file in the
folder (parent), select Show child functions.

20-4

Identify Program Dependencies

The report indicates where each child function resides, for example, in
a specified toolbox. If the report specifies that the location of a child
function is unknown, it can be because:

– The child function is not on the search path.

– The child function is not in the current folder.

– The file was moved or deleted.

• To list the files that call each MATLAB code file, select Show parent
functions.

The report limits the parent (calling) functions to functions in the
current folder.

• To include local functions in the report, select Show subfunctions.
The report lists local functions directly after the main function and
highlights them in gray.

4 Click Run Report on Current Folder.

Reading and Working with Dependency Reports
The following image shows a Dependency Report. It indicates that chirpy.m
calls two files in Signal Processing Toolbox™ and one in Image Processing
Toolbox™. It also shows that go.m calls mobius.m, which is in the current
folder.

20-5

20 Programming Utilities

20-6

Identify Program Dependencies

The Dependency Report includes the following:

• MATLAB File List

The list of files in the folder on which you ran the Dependency Report.
Click a link in this column to open the file in the Editor.

• Children

The function or functions called by the MATLAB file.

Click a link in this column to open the MATLAB file listed in the same row,
and go to the first reference to the called function. For instance, suppose
your Dependency Report appears as shown in the previous image. Clicking
\images\images\erode.m opens chirpy.m and places the cursor at the
first line that references erode. In other words, it does not open erode.m.

• Multiple class methods

Because the report is a static analysis, it cannot determine run-time
data types and, therefore, cannot identify the particular class methods
required by a file. If multiple class methods match a referenced method,
the Dependency Report inserts a question mark link next to the file name.
The question mark appears in the following image.

Click the question mark link to list the class methods with the specified
name that MATLAB might use. MATLAB lists almost all the method
files on the search path that match the specified method file (in this case,
freqresp.m). Do not be concerned if the list includes methods of classes
and MATLAB built-in functions that are unfamiliar to you.

It is not necessary for you to determine which file MATLAB will use.
MATLAB determines which method to use depending on the object that the
program calls at run time.

20-7

20 Programming Utilities

The following image shows the contents of the right side of the Web
Browser after you click the question mark link.

20-8

Protect Your Source Code

Protect Your Source Code
Although MATLAB source (.m) code is executable by itself, the contents
of MATLAB source files are easily accessed, revealing design and
implementation details. If you do not want to distribute your proprietary
application code in this format, you can use one of these more secure options
instead:

• Deploy as P-code — Convert some or all of your source code files to a
content-obscured form called a P-code file (from its .p file extension), and
distribute your application code in this format.

• Compile into binary format — Compile your source code files using the
MATLAB Compiler to produce a standalone application. Distribute the
latter to end users of your application.

In general, if you want to run the code as a standalone application outside of
MATLAB, it is best to use the MATLAB Compiler to make your code secure
. If you plan to run the code within the MATLAB environment, there is no
need to run the Compiler. Instead, convert to P-code those modules of your
source code that need to be secure.

Building a Content Obscured Format with P-Code
A P-code file behaves the same as the MATLAB source from which it was
produced. The P-code file also runs at the same speed as the source file.
Because the contents of P-code files are purposely obscured, they offer a
secure means of distribution outside of your organization.

Note Because users of P-code files cannot view the MATLAB code, consider
providing diagnostics to enable a user to proceed in the event of an error.

Building the P-Code File
To generate a P-code file, enter the following command in the MATLAB
Command Window:

pcode file1 file2, ...

20-9

20 Programming Utilities

The command produces the files, file1.p, file2.p, and so on. To convert all
.m source files residing in your current folder to P-code files, use the command:

pcode *.m

See the pcode function reference page for a description of all syntaxes for
generating P-code files.

Invoking the P-Code File
You invoke the resulting P-code file in the same way you invoke the MATLAB
.m source file from which it was derived. For example, to invoke file myfun.p,
type

[out, out2, ...] = myfun(in1, in2, ...);

To invoke script myscript.p, type

myscript;

When you call a P-code file, MATLAB gives it execution precedence over its
corresponding .m source file. This is true even if you happen to change the
source code at some point after generating the P-code file. Remember to
remove the .m source file before distributing your code.

Running Older P-Code Files on Later Versions of MATLAB
P-Code files are designed to be independent of the release under which they
were created and the release in which they are used (backward and forward
compatibility). New and deprecated MATLAB features can be a problem, but
it is the same problem that would exist if you used the original MATLAB
input file. To fix errors of this kind in a P-code file, fix the corresponding
MATLAB input file and create a new P-code file.

P-code files built using MATLAB Version 7.4 and earlier have a different
format than those built with more recent versions of MATLAB. You still can
use these older P-code files when you run MATLAB 7.4 and later, but this
capability could be removed in a future release. MathWorks recommends that
you rebuild any P-code files that were built with MATLAB 7.4 or earlier using
a more recent version of MATLAB, and then redistribute them as necessary.

20-10

Protect Your Source Code

Building a Standalone Executable
Another way to protect your source code is to build it into a standalone
executable and distribute the executable, along with any other necessary
files, to external customers. You must have the MATLAB Compiler and a
supported C or C++ compiler installed to prepare files for deployment. The
end user, however, does not need MATLAB.

To build a standalone application for your MATLAB application, develop and
debug your application following the usual procedure for MATLAB program
files. Then, generate the executable file or files following the instructions in
“Steps by the Developer to Deploy to End Users” in the MATLAB Compiler
documentation.

20-11

20 Programming Utilities

Create Hyperlinks that Run Functions
The special keyword matlab: lets you embed commands in other functions.
Most commonly, the functions that contain it display hyperlinks, which
execute the commands when you click the hyperlink text. Functions that
support matlab: syntax include disp, error, fprintf, help, and warning.

Use matlab: syntax to create a hyperlink in the Command Window that runs
one or more functions. For example, you can use disp to display the word
Hypotenuse as an executable hyperlink as follows:

disp('Hypotenuse')

Clicking the hyperlink executes the three commands following matlab:,
resulting in

c =
5

Executing the link creates or redefines the variables a, b, and c in the base
workspace.

The argument to disp is an <a href> HTML hyperlink. Include the full
hypertext string, from '<a href= to ' within a single line, that is, do not
continue a long string on a new line. No spaces are allowed after the opening
< and before the closing >. A single space is required between a and href.

You cannot directly execute matlab: syntax. That is, if you type

matlab:a=3; b=4;c=hypot(a,b)

you receive an error, because MATLAB interprets the colon as an array
operator in an illegal context:

??? matlab:a=3; b=4;c=hypot(a,b)
|

Error: The expression to the left of the equals sign
is not a valid target for an assignment.

20-12

Create Hyperlinks that Run Functions

You do not need to use matlab: to display a live hyperlink to the Web. For
example, if you want to link to an external Web page, you can use disp, as
follows:

disp('Hypotenuse')

The result in the Command Window looks the same as the previous example,
but instead opens a page at en.wikipedia.org:

Hypotenuse

Using matlab:, you can:

• “Run a Single Function” on page 20-13

• “Run Multiple Functions” on page 20-13

• “Provide Command Options” on page 20-14

• “Include Special Characters” on page 20-14

Run a Single Function
Use matlab: to run a specified statement when you click a hyperlink in the
Command Window. For example, run this command:

disp('Generate magic square')

It displays this link in the Command Window:

When you click the link, MATLAB runs magic(4).

Run Multiple Functions
You can run multiple functions with a single link. For example, run this
command:

disp('Plot x,y')

It displays this link in the Command Window:

20-13

http://en.wikipedia.org/wiki/Hypotenuse

20 Programming Utilities

When you click the link, MATLAB runs this code:

x = 0:1:8;
y = sin(x);
plot(x,y)

Redefine x in the base workspace:

x = -2*pi:pi/16:2*pi;

Click the hyperlink, Plot x,y again and it changes the current value of x
back to 0:1:8. The code that matlab: runs when you click the Plot x,y
defines x in the base workspace.

Provide Command Options
Use multiple matlab: statements in a file to present options, such as

disp('Disable feature')
disp('Enable feature')

The Command Window displays the links that follow. Depending on which
link you click, MATLAB sets state to 0 or 1.

Include Special Characters
MATLAB correctly interprets most strings that include special characters,
such as a greater than symbol (>). For example, the following statement
includes a greater than symbol (>).

disp(' 0''">Positive')

and generates the following hyperlink.

20-14

Create Hyperlinks that Run Functions

Some symbols might not be interpreted correctly and you might need to use
the ASCII value for the symbol. For example, an alternative way to run the
previous statement is to use ASCII 62 instead of the greater than symbol:

disp('Positive')

20-15

20 Programming Utilities

20-16

Software Development

• Chapter 21, “Error Handling”

• Chapter 22, “Program Scheduling”

• Chapter 23, “Performance”

• Chapter 24, “Memory Usage”

• Chapter 25, “Custom Help and Documentation”

• Chapter 26, “Source Control Interface”

• Chapter 27, “Unit Testing”

21

Error Handling

• “Exception Handling in a MATLAB Application” on page 21-2

• “Capture Information About Exceptions” on page 21-5

• “Throw an Exception” on page 21-16

• “Respond to an Exception” on page 21-18

• “Clean Up When Functions Complete” on page 21-23

• “Issue Warnings and Errors” on page 21-30

• “Suppress Warnings” on page 21-34

• “Restore Warnings” on page 21-37

• “Change How Warnings Display” on page 21-40

• “Use try/catch to Handle Errors” on page 21-42

21 Error Handling

Exception Handling in a MATLAB Application

In this section...

“Overview” on page 21-2

“Getting an Exception at the Command Line” on page 21-2

“Getting an Exception in Your Program Code” on page 21-3

“Generating a New Exception” on page 21-4

Overview
No matter how carefully you plan and test the programs you write, they
may not always run as smoothly as expected when executed under different
conditions. It is always a good idea to include error checking in programs to
ensure reliable operation under all conditions.

In the MATLAB software, you can decide how your programs respond
to different types of errors. You may want to prompt the user for more
input, display extended error or warning information, or perhaps repeat a
calculation using default values. The error-handling capabilities in MATLAB
help your programs check for particular error conditions and execute the
appropriate code depending on the situation.

When MATLAB detects a severe fault in the command or program it is
running, it collects information about what was happening at the time of the
error, displays a message to help the user understand what went wrong, and
terminates the command or program. This is called throwing an exception.
You can get an exception while entering commands at the MATLAB command
prompt or while executing your program code.

Getting an Exception at the Command Line
If you get an exception at the MATLAB prompt, you have several options on
how to deal with it as described below.

Determine the Fault from the Error Message
Evaluate the error message MATLAB has displayed. Most error messages
attempt to explain at least the immediate cause of the program failure. There

21-2

Exception Handling in a MATLAB® Application

is often sufficient information to determine the cause and what you need to
do to remedy the situation.

Review the Failing Code
If the function in which the error occurred is implemented as a MATLAB
program file, the error message should include a line that looks something
like this:

surf

Error using surf (line 50)
Not enough input arguments.

The text includes the name of the function that threw the error (surf, in this
case) and shows the failing line number within that function’s program file.
Click the line number; MATLAB opens the file and positions the cursor at the
location in the file where the error originated. You may be able to determine
the cause of the error by examining this line and the code that precedes it.

Step Through the Code in the Debugger
You can use the MATLAB Debugger to step through the failing code. Click
the underlined error text to open the file in the MATLAB Editor at or near the
point of the error. Next, click the hyphen at the beginning of that line to set a
breakpoint at that location. When you rerun your program, MATLAB pauses
execution at the breakpoint and enables you to step through the program code.
The command dbstop on error is also helpful in finding the point of error.

See the documentation on “Debugging Process and Features” on page 17-2
for more information.

Getting an Exception in Your Program Code
When you are writing your own program in a program file, you can catch
exceptions and attempt to handle or resolve them instead of allowing your
program to terminate. When you catch an exception, you interrupt the normal
termination process and enter a block of code that deals with the faulty
situation. This block of code is called a catch block.

Some of the things you might want to do in the catch block are:

21-3

21 Error Handling

• Examine information that has been captured about the error.

• Gather further information to report to the user.

• Try to accomplish the task at hand in some other way.

• Clean up any unwanted side effects of the error.

When you reach the end of the catch block, you can either continue executing
the program, if possible, or terminate it.

The documentation on “Capture Information About Exceptions” on page
21-5 describes how to acquire information about what caused the error, and
“Respond to an Exception” on page 21-18 presents some ideas on how to
respond to it.

Generating a New Exception
When your program code detects a condition that will either make the
program fail or yield unacceptable results, it should throw an exception. This
procedure

• Saves information about what went wrong and what code was executing at
the time of the error.

• Gathers any other pertinent information about the error.

• Instructs MATLAB to throw the exception.

The documentation on “Capture Information About Exceptions” on page 21-5
describes how to use an MException object to capture information about the
error, and “Throw an Exception” on page 21-16 explains how to initiate the
exception process.

21-4

Capture Information About Exceptions

Capture Information About Exceptions

In this section...

“Overview” on page 21-5

“The MException Class” on page 21-5

“Properties of the MException Class” on page 21-7

“Methods of the MException Class” on page 21-14

Overview
When the MATLAB software throws an exception, it captures information
about what caused the error in a data structure called an MException object.
This object is an instance of the MATLAB MException class. You can obtain
access to the MException object by catching the exception before your program
aborts and accessing the object constructed for this particular error via the
catch command. When throwing an exception in response to an error in
your own code, you will have to create a new MException object and store
information about the error in that object.

This section describes the MException class and objects constructed from
that class:

Information on how to use this class is presented in later sections on “Respond
to an Exception” on page 21-18 and “Throw an Exception” on page 21-16.

The MException Class
The figure shown below illustrates one possible configuration of an object of
the MException class. The object has four properties: identifier, message,
stack, and cause. Each of these properties is implemented as a field of
the structure that represents the MException object. The stack field is an
N-by-1 array of additional structures, each one identifying a function, and
line number from the call stack. The cause field is an M-by-1 cell array of
MException objects, each representing an exception that is related to the
current one.

21-5

21 Error Handling

See “Properties of the MException Class” on page 21-7 for a full description of
these properties.

230��$����
����4�5���

230��$����
����4�5���

230��$����
����4�5���

230��$����
����4�5���

230��$����
����4�5���

230��$����
����4�5���

230��$����
����4�5���

230��$����
����4�5���

Object Constructor
Any code that detects an error and throws an exception must also construct
an MException object in which to record and transfer information about the
error. The syntax of the MException constructor is

ME = MException(identifier, message)

21-6

Capture Information About Exceptions

where identifier is a MATLAB message identifier of the form

component:mnemonic

that is enclosed in single quotes, and message is a text string, also enclosed
in single quotes, that describes the error. The output ME is the resulting
MException object.

If you are responding to an exception rather than throwing one, you do
not have to construct an MException object. The object has already been
constructed and populated by the code that originally detected the error.

Properties of the MException Class
The MException class has four properties. Each of these properties is
implemented as a field of the structure that represents the MException object.
Each of these properties is described in the sections below and referenced
in the sections on “Respond to an Exception” on page 21-18 and “Throw an
Exception” on page 21-16. All are read-only; their values cannot be changed.

The MException properties are:

• identifier

• message

• stack

• cause

Repeating the surf example shown above, but this time catching the
exception, you can see the four properties of the MException object structure.
(This example uses try/catch in an atypical fashion. See the section on “The
try/catch Statement” on page 21-18 for more information on using try/catch).

try
surf

catch ME
ME

end

21-7

21 Error Handling

Run this at the command line and MATLAB returns the contents of the
MException object:

ME =
MException object with properties:

identifier: 'MATLAB:narginchk:notEnoughInputs'
message: 'Not enough input arguments.'

stack: [1x1 struct]
cause: {}

The stack field shows the filename, function, and line number where the
exception was thrown:

ME.stack
ans =

file: 'matlabroot\toolbox\matlab\graph3d\surf.m'
name: 'surf'
line: 54

The cause field is empty in this case. Each field is described in more detail
in the sections that follow.

Message Identifiers
A message identifier is a tag that you attach to an error or warning statement
that makes that error or warning uniquely recognizable by MATLAB. You can
use message identifiers with error reporting to better identify the source of
an error, or with warnings to control any selected subset of the warnings in
your programs.

The message identifier is a read-only character string that specifies a
component and a mnemonic label for an error or warning. The format of
a simple identifier is

component:mnemonic

A colon separates the two parts of the identifier: component and mnemonic.
If the identifier uses more than one component, then additional colons are
required to separate them. A message identifier must always contain at
least one colon.

21-8

Capture Information About Exceptions

Some examples of message identifiers are

MATLAB:rmpath:DirNotFound
MATLAB:odearguments:InconsistentDataType
Simulink:actionNotTaken
TechCorp:OpenFile:notFoundInPath

Both the component and mnemonic fields must adhere to the following syntax
rules:

• No white space (space or tab characters) is allowed anywhere in the
identifier.

• The first character must be alphabetic, either uppercase or lowercase.

• The remaining characters can be alphanumeric or an underscore.

There is no length limitation to either the component or mnemonic. The
identifier can also be an empty string.

Component Field. The component field specifies a broad category under
which various errors and warnings can be generated. Common components
are a particular product or toolbox name, such as MATLAB or Control, or
perhaps the name of your company, such as TechCorp in the preceding
example.

You can also use this field to specify a multilevel component. The following
statement has a three-level component followed by a mnemonic label:

TechCorp:TestEquipDiv:Waveform:obsoleteSyntax

The component field enables you to guarantee the uniqueness of each
identifier. Thus, while the internal MATLAB code might use a certain
warning identifier like MATLAB:InconsistentDataType, that does not
preclude you from using the same mnemonic, as long as you precede it with
a unique component. For example,

warning('TechCorp:InconsistentDataType', ...
'Value %s is inconsistent with existing properties.' ...
sprocketDiam)

21-9

21 Error Handling

Mnemonic Field. The mnemonic field is a string normally used as a tag
relating to the particular message. For example, when reporting an error
resulting from the use of ambiguous syntax, a simple component and
mnemonic such as the following might be appropriate:

MATLAB:ambiguousSyntax

Message Identifiers in an MException Object. When throwing an
exception, create an appropriate identifier and save it to the MException
object at the time you construct the object using the syntax

ME = MException(identifier, string)

For example,

ME = MException('AcctError:NoClient', ...
'Client name not recognized.');

ME.identifier
ans =

AcctError:NoClient

When responding to an exception, you can extract the message identifier from
the MException object as shown here. Using the surf example again,

try
surf

catch ME
id = ME.identifier

end

id =
MATLAB:narginchk:notEnoughInputs

Text of the Error Message
An error message in MATLAB is a read-only character string issued by the
program code and returned in the MException object. This message can assist
the user in determining the cause, and possibly the remedy, of the failure.

21-10

Capture Information About Exceptions

When throwing an exception, compose an appropriate error message and
save it to the MException object at the time you construct the object using
the syntax

ME = MException(identifier, string)

If your message string requires formatting specifications, like those available
with the sprintf function, use this syntax for the MException constructor:

ME = MException(identifier, formatstring, arg1, arg2, ...)

For example,

S = 'Accounts'; f1 = 'ClientName';
ME = MException('AcctError:Incomplete', ...

'Field ''%s.%s'' is not defined.', S, f1);

ME.message
ans =

Field 'Accounts.ClientName' is not defined.

When responding to an exception, you can extract the error message from the
MException object as follows:

try
surf

catch ME
msg = ME.message

end

msg =
Not enough input arguments.

The Call Stack
The stack field of the MException object identifies the line number,
function, and filename where the error was detected. If the error occurs in
a called function, as in the following example, the stack field contains the
line number, function name, and filename not only for the location of the
immediate error, but also for each of the calling functions. In this case, stack

21-11

21 Error Handling

is an N-by-1 array, where N represents the depth of the call stack. That is, the
stack field displays the function name and line number where the exception
occurred, the name and line number of the caller, the caller’s caller, etc.,
until the top-most function is reached.

When throwing an exception, MATLAB stores call stack information in the
stack field. You cannot write to this field; access is read-only.

For example, suppose you have three functions that reside in two separate
files:

mfileA.m
=========================

.

.
42 function A1(x, y)
43 B1(x, y);

mfileB.m
=========================

.

.
8 function B1(x, y)
9 B2(x, y)

.

.
26 function B2(x, y)
27 .
28 .
29 .
30 .
31 % Throw exception here

Catch the exception in variable ME and then examine the stack field:

for k=1:length(ME.stack)
ME.stack(k)

end

21-12

Capture Information About Exceptions

ans =
file: 'C:\matlab\test\mfileB.m'
name: 'B2'
line: 31

ans =
file: 'C:\matlab\test\mfileB.m'
name: 'B1'
line: 9

ans =
file: 'C:\matlab\test\mfileA.m'
name: 'A1'
line: 43

The Cause Array
In some situations, it can be important to record information about not only
the one command that caused execution to stop, but also other exceptions that
your code caught. You can save these additional MException objects in the
cause field of the primary exception.

The cause field of an MException is an optional cell array of related
MException objects. You must use the following syntax when adding objects
to the cause cell array:

primaryException = addCause(primaryException, secondaryException)

This example attempts to assign an array D to variable X. If the D array
does not exist, the code attempts to load it from a MAT-file and then retries
assigning it to X. If the load fails, a new MException object (ME3) is constructed
to store the cause of the first two errors (ME1 and ME2):

try
X = D(1:25)

catch ME1
try

filename = 'test200';
load(filename);
X = D(1:25)

catch ME2
ME3 = MException('MATLAB:LoadErr', ...

21-13

21 Error Handling

'Unable to load from file %s', filename);
ME3 = addCause(ME3, ME1);
ME3 = addCause(ME3, ME2);

end
end

There are two exceptions in the cause field of ME3:

ME3.cause
ans =

[1x1 MException]
[1x1 MException]

Examine the cause field of ME3 to see the related errors:

ME3.cause{:}
ans =

MException object with properties:

identifier: 'MATLAB:UndefinedFunction'
message: 'Undefined function or method 'D' for input

arguments of type 'double'.'
stack: [0x1 struct]
cause: {}

ans =

MException object with properties:

identifier: 'MATLAB:load:couldNotReadFile'
message: 'Unable to read file test204: No such file or

directory.'
stack: [0x1 struct]
cause: {}

Methods of the MException Class
There are ten methods that you can use with the MException class. The
names of these methods are case-sensitive. See the MATLAB function
reference pages for more information.

21-14

Capture Information About Exceptions

Method Name Description

addCause Append an MException to the cause
field of another MException.

disp Display an MException object.

eq Compare MException objects for
equality.

getReport Return a formatted message based on
the current exception.

isequal Compare MException objects for
equality.

last Return the last uncaught exception.
This is a static method.

ne Compare MException objects for
inequality.

rethrow Reissue an exception that has previously
been caught.

throw Issue an exception.

throwAsCaller Issue an exception, but omit the current
stack frame from the stack field.

21-15

21 Error Handling

Throw an Exception
When your program detects a fault that will keep it from completing as
expected or will generate erroneous results, you should halt further execution
and report the error by throwing an exception. The basic steps to take are

1 Detect the error. This is often done with some type of conditional statement,
such as an if statement that checks the output of the current operation.

2 Construct an MException object to represent the error. Add a message
identifier string and error message string to the object when calling the
constructor.

3 If there are other exceptions that may have contributed to the current error,
you can store the MException object for each in the cause field of a single
MException that you intend to throw. Use the addCause method for this.

4 Use the throw or throwAsCaller function to have the MATLAB software
issue the exception. At this point, MATLAB stores call stack information in
the stack field of the MException, exits the currently running function,
and returns control to either the keyboard or an enclosing catch block in a
calling function.

This example illustrates throwing an exception using the steps just described:

function check_results(resultsArr, dataFile)
minValue = 0.09; maxValue = 2.14;

% 1) Detect the error.
if any(resultsArr < minValue) || any(resultsArr > maxValue)

% 2) Construct an MException object to represent the error.
err = MException('ResultChk:OutOfRange', ...

'Resulting value is outside expected range');
fileInfo = dir(dataFile);

% 3) Store any information contributing to the error.
if datenum(fileInfo.date) < datenum('Oct09','mmmyy')

errCause = MException('ResultChk:BadInput', ...
'Input file %s is out of date.', dataFile);

21-16

Throw an Exception

err = addCause(err, errCause);
end

% 4) Throw the exception to stop execution and display
an error message.

throw(err)
end

If the program detects the OutOfRange condition, the throw(err) statement
throws an exception at the end. If the BadInput condition is also detected, the
program also displays this as the cause:

resultsArr = [1.63, 2.05, 0.91, 2.16, 1.5, 2.11 0.72];
check_results(resultsArr, 'run33.dat')

Error using check_results (line 20)
Resulting value is outside expected range

Caused by:
Input file run33.dat is out of date.

21-17

21 Error Handling

Respond to an Exception

In this section...

“Overview” on page 21-18

“The try/catch Statement” on page 21-18

“Suggestions on How to Handle an Exception” on page 21-20

Overview
As stated earlier, the MATLAB software, by default, terminates the currently
running program when an exception is thrown. If you catch the exception in
your program, however, you can capture information about what went wrong,
and deal with the situation in a way that is appropriate for the particular
condition. This requires a try/catch statement.

This section covers the following topics:

The try/catch Statement
When you have statements in your code that could generate undesirable
results, put those statements into a try/catch block that catches any errors
and handles them appropriately.

A try/catch statement looks something like the following pseudocode. It
consists of two parts:

• A try block that includes all lines between the try and catch statements.

• A catch block that includes all lines of code between the catch and end
statements.

try
Perform one ...

or more operations
A catch ME

Examine error info in exception object ME
Attempt to figure out what went wrong
Either attempt to recover, or clean up and abort

21-18

Respond to an Exception

end

B Program continues

The program executes the statements in the try block. If it encounters an
error, it skips any remaining statements in the try block and jumps to the
start of the catch block (shown here as point A). If all operations in the try
block succeed, then execution skips the catch block entirely and goes to the
first line following the end statement (point B).

Specifying the try, catch, and end commands and also the code of the try
and catch blocks on separate lines is recommended. If you combine any of
these components on the same line, separate them with commas:

try, surf, catch ME, ME.stack, end
ans =

file: 'matlabroot\toolbox\matlab\graph3d\surf.m'
name: 'surf'
line: 54

Note You cannot define nested functions within a try or catch block.

The Try Block
On execution, your code enters the try block and executes each statement as
if it were part of the regular program. If no errors are encountered, MATLAB
skips the catch block entirely and continues execution following the end
statement. If any of the try statements fail, MATLAB immediately exits
the try block, leaving any remaining statements in that block unexecuted,
and enters the catch block.

The Catch Block
The catch command marks the start of a catch block and provides access to a
data structure that contains information about what caused the exception.
This is shown as the variable ME in the preceding pseudocode. This data
structure is an object of the MATLAB MException class. When an exception
occurs, MATLAB constructs an instance of this class and returns it in the
catch statement that handles that error.

21-19

21 Error Handling

You are not required to specify any argument with the catch statement.
If you do not need any of the information or methods provided by the
MException object, just specify the catch keyword alone.

The MException object is constructed by internal code in the program that
fails. The object has properties that contain information about the error
that can be useful in determining what happened and how to proceed. The
MException object also provides access to methods that enable you to respond
to the exception. See the section on “The MException Class” on page 21-5 to
find out more about the MException class.

Having entered the catch block, MATLAB executes the statements in
sequence. These statements can attempt to

• Attempt to resolve the error.

• Capture more information about the error.

• Switch on information found in the MException object and respond
appropriately.

• Clean up the environment that was left by the failing code.

The catch block often ends with a rethrow command. The rethrow causes
MATLAB to exit the current function, keeping the call stack information as it
was when the exception was first thrown. If this function is at the highest
level, that is, it was not called by another function, the program terminates. If
the failing function was called by another function, it returns to that function.
Program execution continues to return to higher level functions, unless any
of these calls were made within a higher-level try block, in which case the
program executes the respective catch block.

More information about the MException class is provided in the section
“Capture Information About Exceptions” on page 21-5.

Suggestions on How to Handle an Exception
The following example reads the contents of an image file. The try block
attempts to open and read the file. If either the open or read fails, the
program catches the resulting exception and saves the MException object in
the variable ME1.

21-20

Respond to an Exception

The catch block in the example checks to see if the specified file could not be
found. If so, the program allows for the possibility that a common variation
of the filename extension (e.g., jpeg instead of jpg) was used by retrying
the operation with a modified extension. This is done using a try/catch
statement nested within the original try/catch.

function d_in = read_image(filename)
[path name ext] = fileparts(filename);
try

fid = fopen(filename, 'r');
d_in = fread(fid);

catch ME1
% Get last segment of the error message identifier.
idSegLast = regexp(ME1.identifier, '(?<=:)\w+$', 'match');

% Did the read fail because the file could not be found?
if strcmp(idSegLast, 'InvalidFid') && ...

~exist(filename, 'file')

% Yes. Try modifying the filename extension.
switch ext
case '.jpg' % Change jpg to jpeg

filename = strrep(filename, '.jpg', '.jpeg')
case '.jpeg' % Change jpeg to jpg

filename = strrep(filename, '.jpeg', '.jpg')
case '.tif' % Change tif to tiff

filename = strrep(filename, '.tif', '.tiff')
case '.tiff' % Change tiff to tif

filename = strrep(filename, '.tiff', '.tif')
otherwise

fprintf('File %s not found\n', filename);
rethrow(ME1);

end

% Try again, with modifed filenames.
try

fid = fopen(filename, 'r');
d_in = fread(fid);

catch ME2
fprintf('Unable to access file %s\n', filename);

21-21

21 Error Handling

ME2 = addCause(ME2, ME1);
rethrow(ME2)

end
end

end

This example illustrates some of the actions that you can take in response
to an exception:

• Compare the identifier field of the MException object against possible
causes of the error.

• Use a nested try/catch statement to retry the open and read operations
using a known variation of the filename extension.

• Display an appropriate message in the case that the file truly does not
exist and then rethrow the exception.

• Add the first MException object to the cause field of the second.

• Rethrow the exception. This stops program execution and displays the
error message.

Cleaning up any unwanted results of the error is also advisable. For example,
your program may have allocated a significant amount of memory that it
no longer needs.

21-22

Clean Up When Functions Complete

Clean Up When Functions Complete

In this section...

“Overview” on page 21-23

“Examples of Cleaning Up a Program Upon Exit” on page 21-25

“Retrieving Information About the Cleanup Routine” on page 21-27

“Using onCleanup Versus try/catch” on page 21-28

“onCleanup in Scripts” on page 21-28

Overview
A good programming practice is to make sure that you leave your program
environment in a clean state that does not interfere with any other program
code. For example, you might want to

• Close any files that you opened for import or export.

• Restore the MATLAB path.

• Lock or unlock memory to prevent or allow erasing MATLAB function
or MEX-files.

• Set your working folder back to its default if you have changed it.

• Make sure global and persistent variables are in the correct state.

MATLAB provides the onCleanup function for this purpose. This function,
when used within any program, establishes a cleanup routine for that
function. When the function terminates, whether normally or in the event of
an error or Ctrl+C, MATLAB automatically executes the cleanup routine.

The following statement establishes a cleanup routine cleanupFun for the
currently running program:

cleanupObj = onCleanup(@cleanupFun);

When your program exits, MATLAB finds any instances of the onCleanup
class and executes the associated function handles. The process of generating
and activating function cleanup involves the following steps:

21-23

21 Error Handling

1 Write one or more cleanup routines for the program under development.
Assume for now that it takes only one such routine.

2 Create a function handle for the cleanup routine.

3 At some point, generally early in your program code, insert a call to the
oncleanup function, passing the function handle.

4 When the program is run, the call to onCleanup constructs a cleanup object
that contains a handle to the cleanup routine created in step 1.

5 When the program ends, MATLAB implicitly clears all objects that are
local variables. This invokes the destructor method for each local object in
your program, including the cleanup object constructed in step 4.

6 The destructor method for this object invokes this routine if it exists. This
perform the tasks needed to restore your programming environment.

You can declare any number of cleanup routines for a program file. Each
call to onCleanup establishes a separate cleanup routine for each cleanup
object returned.

If, for some reason, the object returned by onCleanup persists beyond the life
of your program, then the cleanup routine associated with that object is not
run when your function terminates. Instead, it will run whenever the object
is destroyed (e.g., by clearing the object variable).

Your cleanup routine should never rely on variables that are defined outside
of that routine. For example, the nested function shown here on the left
executes with no error, whereas the very similar one on the right fails with
the error, Undefined function or variable 'k'. This results from the
cleanup routine’s reliance on variable k which is defined outside of the nested
cleanup routine:

function testCleanup function testCleanup
k = 3; k = 3;
myFun obj = onCleanup(@myFun);

function myFun function myFun
fprintf('k is %d\n', k) fprintf('k is %d\n', k)
end end

end end

21-24

Clean Up When Functions Complete

Examples of Cleaning Up a Program Upon Exit

Example 1 — Close Open Files on Exit
MATLAB closes the file with identifier fid when function openFileSafely
terminates:

function openFileSafely(fileName)
fid = fopen(fileName, 'r');
c = onCleanup(@()fclose(fid));

s = fread(fid);
.
.
.

end

Example 2 — Maintain the Selected Folder
This example preserves the current folder whether functionThatMayError
returns an error or not:

function changeFolderSafely(fileName)
currentFolder = pwd;
c = onCleanup(@()cd(currentFolder));

functionThatMayError;
end % c executes cd(currentFolder) here.

Example 3 — Close Figure and Restore MATLAB Path
This example extends the MATLAB path to include files in the toolbox\images
folders, and then displays a figure from one of these folders. After the figure
displays, the cleanup routine restore_env closes the figure and restores
the path to its original state:

function showImageOutsidePath(imageFile)
fig1 = figure;
imgpath = genpath([matlabroot '\toolbox\images']);

21-25

21 Error Handling

% Define the cleanup routine.
cleanupObj = onCleanup(@()restore_env(fig1, imgpath));

% Modify the path to gain access to the image file,
% and display the image.
addpath(imgpath);
rgb = imread(imageFile);
fprintf('\n Opening the figure %s\n', imageFile);
image(rgb);
pause(2);

% This is the cleanup routine.
function restore_env(fighandle, newpath)
disp ' Closing the figure'
close(fighandle);
pause(2)

disp ' Restoring the path'
rmpath(newpath);
end

end

Run the function as shown here. You can verify that the path has been
restored by comparing the length of the path before and after running the
function:

origLen = length(path);

showImageOutsidePath('greens.jpg')
Opening the figure greens.jpg
Closing the figure
Restoring the path

currLen = length(path);
currLen == origLen
ans =

1

21-26

Clean Up When Functions Complete

Retrieving Information About the Cleanup Routine
In Example 3 shown above, the cleanup routine and data needed to call it are
contained in a handle to an anonymous function:

@()restore_env(fig1, imgpath)

The details of that handle are then contained within the object returned by
the onCleanup function:

cleanupObj = onCleanup(@()restore_env(fig1, imgpath));

You can access these details using the task property of the cleanup object
as shown here. (Modify the showImageOutsidePath function by adding the
following code just before the comment line that says, “% This is the
cleanup routine.”)

disp ' Displaying information from the function handle:'
task = cleanupObj.task;
fun = functions(task)
wsp = fun.workspace{2,1}
fprintf('\n');
pause(2);

Run the modified function to see the output of the functions command and
the contents of one of the workspace cells:

showImageOutsidePath('greens.jpg')

Opening the figure greens.jpg
Displaying information from the function handle:
fun =

function: '@()restore_env(fig1,imgpath)'
type: 'anonymous'
file: 'c:\work\g6.m'

workspace: {2x1 cell}
wsp =

imageFile: 'greens.jpg'
fig1: 1

imgpath: [1x3957 char]
cleanupObj: [1x1 onCleanup]

rgb: [300x500x3 uint8]

21-27

21 Error Handling

task: @()restore_env(fig1,imgpath)

Closing the figure
Restoring the path

Using onCleanup Versus try/catch
Another way to run a cleanup routine when a function terminates
unexpectedly is to use a try/catch statement. There are limitations to using
this technique however. If the user ends the program by typing Ctrl+C,
MATLAB immediately exits the try block, and the cleanup routine never
executes. The cleanup routine also does not run when you exit the function
normally.

The following program cleans up if an error occurs, but not in response to
Ctrl+C:

function cleanupByCatch
try

pause(10);
catch

disp(' Collecting information about the error')
disp(' Executing cleanup tasks')

end

Unlike the try/catch statement, the onCleanup function responds not only
to a normal exit from your program and any error that might be thrown, but
also to Ctrl+C. This next example replaces the try/catch with onCleanup:

function cleanupByFunc
obj = onCleanup(@()...

disp(' Executing cleanup tasks'));
pause(10);

onCleanup in Scripts
onCleanup does not work in scripts as it does in functions. In functions, the
cleanup object is stored in the function workspace. When the function exits,
this workspace is cleared thus executing the associated cleanup routine.
In scripts, the cleanup object is stored in the base workspace (that is, the
workspace used in interactive work done at the command prompt). Because
exiting a script has no effect on the base workspace, the cleanup object is

21-28

Clean Up When Functions Complete

not cleared and the routine associated with that object does not execute. To
use this type of cleanup mechanism in a script, you would have to explicitly
clear the object from the command line or another script when the first script
terminates.

21-29

21 Error Handling

Issue Warnings and Errors

In this section...

“Issue Warnings” on page 21-30

“Throw Errors” on page 21-30

“Add Run-Time Parameters to Your Warnings and Errors” on page 21-31

“Add Identifiers to Warnings and Errors” on page 21-32

Issue Warnings
You can issue a warning to flag unexpected conditions detected when running
a program. The warning function prints a warning message to the command
line. Warnings differ from errors in two significant ways:

• Warnings do not halt the execution of the program.

• You can suppress any unhelpful MATLAB warnings.

Use the warning function in your code to generate a warning message during
execution. Specify the message string as the input argument to the warning
function:

warning('Input must be a string')

For example, you can insert a warning in your code to verify the software
version:

function warningExample1
if ~strncmp(version, '7', 1)

warning('You are using a version other than v7')
end

Throw Errors
You can throw an error to flag fatal problems within the program. Use the
error function to print error messages to the command line. After displaying
the message, MATLAB stops the execution of the current program.

21-30

Issue Warnings and Errors

For example, suppose you construct a function that returns the number of
combinations of k elements from n elements. Such a function is nonsensical
if k > n; you cannot choose 8 elements if you start with just 4. You must
incorporate this fact into the function to let anyone using combinations
know of the problem:

function com = combinations(n,k)
if k > n

error('Cannot calculate with given values')
end
com = factorial(n)/(factorial(k)*factorial(n-k));

end

If the combinations function receives invalid input, MATLAB stops execution
immediately after throwing the error message:

combinations(4,8)

Error using combinations (line 3)
Cannot calculate with given values

Add Run-Time Parameters to Your Warnings and
Errors
To make your warning or error messages more specific, insert components
of the message string at the time of execution. The warning function uses
conversion characters that are the same as those used by the sprintf
function. Conversion characters act as placeholders for substrings or values,
unknown until the code executes.

For example, this warning uses %s and %d to mark where to insert the values
of variables arrayname and arraydims:

warning('Array %s has %d dimensions.',arrayname,arraydims)

If you execute this command with arrayname = 'A' and arraydims = 3,
MATLAB responds:

Warning: Array A has 3 dimensions.

Adding run-time parameters to your warnings and errors can clarify the
problems within a program. Consider the function combinations from

21-31

21 Error Handling

“Throw Errors” on page 21-30. You can throw a much more informative error
using run-time parameters:

function com = combinations(n,k)
if k > n

error('Cannot choose %i from %i elements',k,n)
end
com = factorial(n)/(factorial(k)*factorial(n-k));

end

If this function receives invalid arguments, MATLAB throws an error
message and stops the program:

combinations(6,9)

Error using combinations (line 3)
Cannot choose 9 from 6 elements

Add Identifiers to Warnings and Errors
A message identifier provides a way to uniquely reference a warning or an
error.

Enable or disable warnings with identifiers. Use an identifying string
argument with the warning function to attach a unique tag to a message:

warning(identifier_string,message_string)

For example, you can add an identifier tag to the previous MATLAB warning
about which version of software is running:

minver = '7';
if ~strncmp(version,minver,1)

warning('MYTEST:VERCHK','You are using a version other than v%s',minver)
end

Adding an identifier to an error message allows for negative testing. However,
adding and recovering more information from errors often requires working
with MException objects.

See Also warning | lastwarn | warndlg | MException

21-32

Issue Warnings and Errors

Related
Examples

• “Suppress Warnings” on page 21-34
• “Restore Warnings” on page 21-37
• “Capture Information About Exceptions” on page 21-5
• “Exception Handling in a MATLAB Application” on page 21-2

Concepts • “Message Identifiers” on page 21-8

21-33

21 Error Handling

Suppress Warnings
Your program might issue warnings that do not always adversely affect
execution. To avoid confusion, you can hide warning messages during
execution by changing their states from 'on' to 'off'.

To suppress specific warning messages, you must first find the warning
identifier. Each warning message has a unique identifier. To find the
identifier associated with a MATLAB warning, reproduce the warning. For
example, this code reproduces a warning thrown if MATLAB attempts to
remove a nonexistent folder:

rmpath('folderthatisnotonpath');

Warning: "folderthatisnotonpath" not found in path.

Note If this statement does not produce a warning message, use the
following code to temporarily enable the display of all warnings, and then
restore the original warning state:

w = warning ('on','all');
rmpath('folderthatisnotonpath');
warning(w);

To obtain information about the most recently issued warning, use the
warning or lastwarn functions. This code uses the query state to return a
data structure containing the message identifier and the current state of
the last warning:

w = warning('query','last')

w =

identifier: 'MATLAB:rmpath:DirNotFound'
state: 'on'

You can save the identifier field in the variable, id:

id = w.identifier;

21-34

Suppress Warnings

Note warning('query','last') returns the last warning whether or not
MATLAB displays the message. MATLAB only displays warning messages
that have state: 'on'.

Using the lastwarn function, you can retrieve the last-displayed warning
message:

lastwarn

ans =

"folderthatisnotonpath" not found in path.

Turn Warnings On and Off
After you obtain the identifier from the query state, use this information to
disable or enable the warning associated with that identifier.

Continuing the example from the previous section, turn the warning
'MATLAB:rmpath:DirNotFound' off, and repeat the operation.

warning('off',id)
rmpath('folderthatisnotonpath');

MATLAB displays no warning.

Turn the warning on, and try to remove a nonexistent path:

warning('on',id)
rmpath('folderthatisnotonpath');

Warning: "folderthatisnotonpath" not found in path.

MATLAB now issues a warning.

Tip Turn off the most recently invoked warning with
warning('off','last').

21-35

21 Error Handling

Controlling All Warnings
The term all refers only to those warnings that have been issued or modified
during your current MATLAB session. Modified warning states persist only
through the current session. Starting a new session restores the default
settings.

Use the identifier 'all' to represent the group of all warnings. View the state
of all warnings with either syntax:

warning('query','all')

warning

To enable all warnings and verify the state:

warning('on','all');
warning('query','all');

All warnings have the state 'on'.

To disable all warnings and verify the state, use this syntax:

warning('off','all');
warning;

All warnings have the state 'off'.

Related
Examples

• “Restore Warnings” on page 21-37
• “Change How Warnings Display” on page 21-40

21-36

Restore Warnings

Restore Warnings
MATLAB allows you to save the on-off warning states, modify warning
states, and restore the original warning states. This is useful if you need to
temporarily turn off some warnings and later reinstate the original settings.

The following statement saves the current state of all warnings in the
structure array called orig_state:

orig_state = warning;

To restore the original state after any warning modifications, use this syntax:

warning(orig_state);

You also can save the current state and toggle warnings in a single command.
For example, the statement, orig_state = warning('off','all'); is
equivalent to the commands:

orig_state = warning;
warning('off','all');

Disable and Restore a Particular Warning
This example shows you how to restore the state of a particular warning.

1 Query the Control:parameterNotSymmetric warning:

warning('query','Control:parameterNotSymmetric')

The state of warning 'Control:parameterNotSymmetric' is 'on'.

2 Turn off the Control:parameterNotSymmetric warning:

orig_state = warning('off','Control:parameterNotSymmetric')

orig_state =

identifier: 'Control:parameterNotSymmetric'
state: 'on'

21-37

21 Error Handling

orig_state contains the warning state before MATLAB turns
Control:parameterNotSymmetric off.

3 Query all warning states:

warning

The default warning state is 'on'. Warnings not set to the default are

State Warning Identifier

off Control:parameterNotSymmetric

MATLAB indicates that Control:parameterNotSymmetric is 'off'.

4 Restore the original state:

warning(orig_state)
warning('query','Control:parameterNotSymmetric')

The state of warning 'Control:parameterNotSymmetric' is 'on'.

Disable and Restore Multiple Warnings
This example shows you how to save and restore multiple warning states.

1 Disable three warnings, and query all the warnings:

w(1) = warning('off','MATLAB:rmpath:DirNotFound');
w(2) = warning('off','MATLAB:singularMatrix');
w(3) = warning('off','Control:parameterNotSymmetric');
warning

The default warning state is 'on'. Warnings not set to the default are

State Warning Identifier

off Control:parameterNotSymmetric
off MATLAB:rmpath:DirNotFound
off MATLAB:singularMatrix

2 Restore the three warnings to their the original state, and query all warnings:

21-38

Restore Warnings

warning(w)
warning

All warnings have the state 'on'.

You do not need to store information about the previous warning states in an
array, but doing so allows you to restore warnings with one command.

Note When temporarily disabling multiple warnings, using methods related
to onCleanup might be advantageous.

Alternatively, you can save and restore all warnings.

1 Enable all warnings, and save the original warning state:

orig_state = warning('on','all');

2 Restore your warnings to the previous state:

warning(orig_state)

See Also warning | onCleanup

Related
Examples

• “Suppress Warnings” on page 21-34
• “Clean Up When Functions Complete” on page 21-23

21-39

21 Error Handling

Change How Warnings Display
You can control how warnings appear in MATLAB by modifying two warning
modes, verbose and backtrace.

Mode Description Default

verbose Display a message on how to
suppress the warning.

off (terse)

backtrace Display a stack trace after a
warning is invoked.

on (enabled)

Note The verbose and backtrace modes present some limitations:

• prev_state does not contain information about the backtrace or verbose
modes in the statement, prev_state = warning('query','all').

• A mode change affects all enabled warnings.

Enable Verbose Warnings
When you enable verbose warnings, MATLAB displays an extra line of
information with each warning that tells you how to suppress it.

For example, you can turn on all warnings, disable backtrace, and enable
verbose warnings:

warning on all
warning off backtrace
warning on verbose

Running a command that produces an error displays an extended message:

rmpath('folderthatisnotonpath');

Warning: "folderthatisnotonpath" not found in path.
(Type "warning off MATLAB:rmpath:DirNotFound" to suppress this warning.)

21-40

Change How Warnings Display

Display a Stack Trace on a Specific Warning
It can be difficult to locate the source of a warning when it is generated from
code buried in several levels of function calls. When you enable the backtrace
mode, MATLAB displays the file name and line number where the warning
occurred. For example, you can enable backtrace and disable verbose:

warning on backtrace
warning off verbose

Running a command that produces an error displays a hyperlink with a line
number:

Warning: "folderthatisnotonpath" not found in path.
> In rmpath at 58

Clicking the hyperlink takes you to the location of the warning.

21-41

21 Error Handling

Use try/catch to Handle Errors
You can use a try/catch statement to execute code after your program
encounters an error. try/catch statements can be useful if you:

• Want to finish the program in another way that avoids errors

• Need to clean up unwanted side effects of the error

• Have many problematic input parameters or commands

Arrange try/catch statements into blocks of code, similar to this pseudocode:

try
try block...

catch
catch block...

end

If an error occurs within the try block, MATLAB skips any remaining
commands in the try block and executes the commands in the catch block.
If no error occurs within try block, MATLAB skips the entire catch block.

For example, a try/catch statement can prevent the need to throw errors.
Consider the combinations function that returns the number of combinations
of k elements from n elements:

function com = combinations(n,k)
com = factorial(n)/(factorial(k)*factorial(n-k));

end

MATLAB throws an error whenever k > n. You cannot construct a set with
more elements, k, than elements you possess, n. Using a try/catch statement,
you can avoid the error and execute this function regardless of the order of
inputs:

function com = robust_combine(n,k)
try

com = factorial(n)/(factorial(k)*factorial(n-k));
catch

com = factorial(k)/(factorial(n)*factorial(k-n));
end

21-42

Use try/catch to Handle Errors

end

robust_combine treats any order of integers as valid inputs:

C1 = robust_combine(8,4)
C2 = robust_combine(4,8)

C1 =

70

C2 =

70

MATLAB might give you a code analyzer message: Line 4: Best practice
is for CATCH to be followed by an identifier that gets the error
information. This message indicates that you can capture more information
about errors if a variable follows your catch statement:

catch MExc

MExc is an MException class object that contains more information about the
thrown error. To learn more about accessing information from MException
objects, see “Exception Handling in a MATLAB Application” on page 21-2.

See Also MException | onCleanup

21-43

21 Error Handling

21-44

22

Program Scheduling

• “Using a MATLAB Timer Object” on page 22-2

• “Creating Timer Objects” on page 22-5

• “Working with Timer Object Properties” on page 22-7

• “Starting and Stopping Timers” on page 22-10

• “Creating and Executing Callback Functions” on page 22-14

• “Timer Object Execution Modes” on page 22-19

• “Deleting Timer Objects from Memory” on page 22-26

• “Finding Timer Objects in Memory” on page 22-27

22 Program Scheduling

Using a MATLAB Timer Object

In this section...

“Overview” on page 22-2

“Example: Displaying a Message” on page 22-3

Overview
The MATLAB software includes a timer object that you can use to schedule
the execution of MATLAB commands. This section describes how you can
create timer objects, start a timer running, and specify the processing that
you want performed when a timer fires. A timer is said to fire when the
amount of time specified by the timer object elapses and the timer object
executes the commands you specify.

To use a timer, perform these steps:

1 Create a timer object.

You use the timer function to create a timer object. See “Creating Timer
Objects” on page 22-5 for more information.

2 Specify which MATLAB commands you want executed when the timer fires
and control other aspects of timer object behavior.

You use timer object properties to specify this information. To learn about all
the properties supported by the timer object, see “Working with Timer Object
Properties” on page 22-7. (You can also set timer object properties when you
create them, in step 1.)

3 Start the timer object.

After you create the timer object, you must start it, using either the start
or startat function. See “Starting and Stopping Timers” on page 22-10 for
more information.

4 Delete the timer object when you are done with it.

22-2

Using a MATLAB® Timer Object

After you are finished using a timer object, you should delete it from
memory. See “Deleting Timer Objects from Memory” on page 22-26 for more
information.

Note The specified execution time and the actual execution of a timer can
vary because timer objects work in the MATLAB single-threaded execution
environment. The length of this time lag is dependent on what other
processing MATLAB is performing. To force the execution of the callback
functions in the event queue, include a call to the drawnow function in your
code. The drawnow function flushes the event queue.

Example: Displaying a Message
The following example sets up a timer object that executes a MATLAB
command string after 10 seconds elapse. The example creates a timer
object, specifying the values of two timer object properties, TimerFcn and
StartDelay. TimerFcn specifies the timer callback function. This is the
MATLAB command string or program file that you want to execute when
the timer fires. In the example, the timer callback function sets the value
of the MATLAB workspace variable stat and executes the MATLAB disp
command. The StartDelay property specifies how much time elapses before
the timer fires.

After creating the timer object, the example uses the start function to start
the timer object. (The additional commands in this example are included to
illustrate the timer but are not required for timer operation.)

t = timer('TimerFcn', 'stat=false; disp(''Timer!'')',...
'StartDelay',10);

start(t)

stat=true;
while(stat==true)

disp('.')
pause(1)

end

When you execute this code, it produces this output:

22-3

22 Program Scheduling

.

.

.

.

.

.

.

.

.
Timer!

delete(t) % Always delete timer objects after using them.

Related
Examples

• “Creating and Executing Callback Functions” on page 22-14

22-4

Creating Timer Objects

Creating Timer Objects

In this section...

“Creating the Object” on page 22-5

“Naming the Object” on page 22-6

Creating the Object
To use a timer in MATLAB, you must create a timer object. The timer
object represents the timer in MATLAB, supporting various properties and
functions that control its behavior.

To create a timer object, use the timer function. This creates a valid timer
object with default values for most properties. The following shows an
example of the default timer object and its summary display:

t = timer
Timer Object: timer-1

Timer Settings
ExecutionMode: singleShot

Period: 1
BusyMode: drop
Running: off

Callbacks
TimerFcn: ''
ErrorFcn: ''
StartFcn: ''
StopFcn: ''

MATLAB names the timer object timer-1. (See “Naming the Object” on page
22-6 for more information.)

To specify the value of timer object properties after you create it, you can use
the set function. This example sets the value of the TimerFcn property and
the StartDelay property. For more information about timer object properties,
see “Working with Timer Object Properties” on page 22-7.

22-5

22 Program Scheduling

set(t,'TimerFcn',@(x,y)disp('Hello World!'),'StartDelay',5)

You can also set timer object properties when you create the timer object by
specifying property name and value pairs as arguments to the timer function.
The following example sets the same properties at object creation time:

t = timer('TimerFcn', @(x,y)disp('Hello World!'),'StartDelay',5);

Always delete timer objects when you are done using them. See “Deleting
Timer Objects from Memory” on page 22-26 for more information.

Naming the Object
MATLAB assigns a name to each timer object you create. This name has the
form 'timer-i', where i is a number representing the total number of timer
objects created this session.

For example, the first time you call the timer function to create a timer object,
MATLAB names the object timer-1. If you call the timer function again to
create another timer object, MATLAB names the object timer-2.

MATLAB keeps incrementing the number associated with each timer object it
creates, even if you delete the timer objects you already created. For example,
if you delete the first two timer objects and create a new object, MATLAB
names it timer-3, even though the other two timer objects no longer exist in
memory. To reset the numeric part of timer object names to 1, execute the
clear classes command.

See Also timer

Related
Examples

• “Creating and Executing Callback Functions” on page 22-14

22-6

Working with Timer Object Properties

Working with Timer Object Properties

In this section...

“Retrieving the Value of Timer Object Properties” on page 22-7

“Setting the Value of Timer Object Properties” on page 22-8

To get information about timer object properties, see the timer function
reference page.

Retrieving the Value of Timer Object Properties
The timer object supports many properties that provide information about
the current state of the timer object and control aspects of its functioning. To
retrieve the value of a timer object property, you can use the get function or
use subscripts (dot notation) to access the field.

The following example uses the get function to retrieve the value of the
ExecutionMode property:

t = timer;

tmode = get(t,'ExecutionMode')

tmode =

singleShot

The following example uses dot notation to retrieve the value of the
ExecutionMode property:

tmode = t.ExecutionMode

tmode =

singleShot

To view a list of all the properties of a timer object, use the get function,
specifying the timer object as the only argument:

22-7

22 Program Scheduling

get(t)
AveragePeriod: NaN

BusyMode: 'drop'
ErrorFcn: ''

ExecutionMode: 'singleShot'
InstantPeriod: NaN

Name: 'timer-4'
ObjectVisibility: 'on'

Period: 1
Running: 'off'

StartDelay: 0
StartFcn: ''
StopFcn: ''

Tag: ''
TasksExecuted: 0

TasksToExecute: Inf
TimerFcn: ''

Type: 'timer'
UserData: []

Setting the Value of Timer Object Properties
To set the value of a timer object property, use the set function or subscripted
assignment (dot notation). You can also set timer object properties when you
create the timer object. For more information, see “Creating Timer Objects”
on page 22-5.

The following example uses both methods to assign values to timer object
properties. The example creates a timer that, once started, displays a message
every second until you stop it with the stop command.

1 Create a timer object.

t = timer;

2 Assign values to timer object properties using the set function.

set(t,'ExecutionMode','fixedRate','BusyMode','drop','Period',1);

3 Assign a value to the timer object TimerFcn property using dot notation.

t.TimerFcn = @(x,y)disp('Processing...');

22-8

Working with Timer Object Properties

4 Start the timer object. It displays a message at 1-second intervals.

start(t)

5 Stop the timer object.

stop(t)

6 Delete timer objects after you are done using them.

delete(t)

Viewing a List of All Settable Properties
To view a list of all timer object properties that can have values assigned to
them (in contrast to the read-only properties), use the set function, specifying
the timer object as the only argument.

The display includes the values you can use to set the property if, like the
BusyMode property, the property accepts an enumerated list of values.

t = timer;

set(t)

BusyMode: [{drop} | queue | error]

ErrorFcn: string -or- function handle -or- cell array

ExecutionMode: [{singleShot} | fixedSpacing | fixedDelay | fixedRate]

Name

ObjectVisibility: [{on} | off]

Period

StartDelay

StartFcn: string -or- function handle -or- cell array

StopFcn: string -or- function handle -or- cell array

Tag

TasksToExecute

TimerFcn: string -or- function handle -or- cell array

UserData

22-9

22 Program Scheduling

Starting and Stopping Timers

In this section...

“Starting a Timer” on page 22-10

“Starting a Timer at a Specified Time” on page 22-10

“Stopping Timer Objects” on page 22-11

“Blocking the MATLAB Command Line” on page 22-12

Note Because the timer works within the MATLAB single-threaded
environment, it cannot guarantee execution times or execution rates.

Starting a Timer
To start a timer object, call the start function, specifying the timer object
as the only argument. The start function starts a timer object running;
the amount of time the timer runs is specified in seconds in the StartDelay
property.

This example creates a timer object that displays a greeting after 5 seconds
elapse.

1 Create a timer object, specifying values for timer object properties.

t = timer('TimerFcn',@(x,y)disp('Hello World!'),'StartDelay', 5);

2 Start the timer object.

start(t)

3 Delete the timer object after you are finished using it.

delete(t);

Starting a Timer at a Specified Time
To start a timer object and specify a date and time for the timer to fire, (rather
than specifying the number of seconds to elapse), use the startat function.
This function starts a timer object and allows you to specify the date, hour,

22-10

Starting and Stopping Timers

minute, and second when you want to the timer to execute. You specify
the time as a MATLAB serial date number or as a specially formatted date
text string.

This example creates a timer object that displays a message after an hour has
elapsed. The startat function starts the timer object running and calculates
the value of the StartDelay property based on the time you specify.

t2=timer('TimerFcn',@(x,y)disp('It has been an hour now'));
startat(t2,now+1/24);

Stopping Timer Objects
Once started, the timer object stops running if one of the following conditions
apply:

• The timer function callback (TimerFcn) has been executed the number of
times specified in the TasksToExecute property.

• An error occurred while executing a timer function callback (TimerFcn).

You can also stop a timer object by using the stop function, specifying the
timer object as the only argument. The following example illustrates stopping
a timer object:

1 Create a timer object.

t = timer('TimerFcn',@(x,y)disp('Hello World!'), ...
'StartDelay', 100);

2 Start it running.

start(t)

3 Check the state of the timer object after starting it.

get(t,'Running')

ans =

on

22-11

22 Program Scheduling

4 Stop the timer using the stop command and check the state again. When
a timer stops, the value of the Running property of the timer object is set
to 'off'.

stop(t)

get(t,'Running')

ans =

off

5 Delete the timer object when you are finished using it.

delete(t)

Note The timer object can execute a callback function that you specify when
it starts or stops. See “Creating and Executing Callback Functions” on page
22-14.

Blocking the MATLAB Command Line
By default, when you use the start or startat function to start a timer
object, the function returns control to the command line immediately. For
some applications, you might prefer to block the command line until the
timer fires. To do this, call the wait function right after calling the start
or startat function.

1 Create a timer object.

t = timer('StartDelay', 5,'TimerFcn', ...
@(x,y)disp('Hello World!'));

2 Start the timer object running.

start(t)

22-12

Starting and Stopping Timers

3 After the start function returns, call the wait function immediately. The
wait function blocks the command line until the timer object fires.

wait(t)

4 Delete the timer object after you are finished using it.

delete(t)

See Also timer

Related
Examples

• “Timer Object Execution Modes” on page 22-19

22-13

22 Program Scheduling

Creating and Executing Callback Functions

In this section...

“Associating Commands with Timer Object Events” on page 22-14

“Creating Callback Functions” on page 22-15

“Specifying the Value of Callback Function Properties” on page 22-17

Note Callback function execution might be delayed if the callback involves
a CPU-intensive task such as updating a figure.

Associating Commands with Timer Object Events
The timer object supports properties that let you specify the MATLAB
commands that execute when a timer fires, and for other timer object
events, such as starting, stopping, or when an error occurs. These are called
callbacks. To associate MATLAB commands with a timer object event, set the
value of the associated timer object callback property.

The following diagram shows when the events occur during execution of a
timer object and give the names of the timer object properties associated
with each event. For example, to associate MATLAB commands with a start
event, assign a value to the StartFcn callback property. Error callbacks
can occur at any time.

22-14

Creating and Executing Callback Functions

Timer Object Events and Related Callback Function

Creating Callback Functions
When the time period specified by a timer object elapses, the timer object
executes one or more MATLAB functions of your choosing. You can specify
the functions directly as the value of the callback property. You can also
put the commands in a function file and specify the function as the value of
the callback property.

Specifying Callback Functions Directly
This example creates a timer object that displays a greeting after 5 seconds.
The example specifies the value of the TimerFcn callback property directly,
putting the commands in a text string.

t = timer('TimerFcn',@(x,y)disp('Hello World!'),'StartDelay',5);

22-15

22 Program Scheduling

Note When you specify the callback commands directly as the value of the
callback function property, the commands are evaluated in the MATLAB
workspace.

Putting Commands in a Callback Function
Instead of specifying MATLAB commands directly as the value of a callback
property, you can put the commands in a MATLAB program file and specify
the file as the value of the callback property.

When you create a callback function, the first two arguments must be a
handle to the timer object and an event structure. An event structure contains
two fields: Type and Data. The Type field contains a text string that identifies
the type of event that caused the callback. The value of this field can be any of
the following strings: 'StartFcn', 'StopFcn', 'TimerFcn', or 'ErrorFcn'.
The Data field contains the time the event occurred.

In addition to these two required input arguments, your callback function can
accept application-specific arguments. To receive these input arguments, you
must use a cell array when specifying the name of the function as the value
of a callback property. For more information, see “Specifying the Value of
Callback Function Properties” on page 22-17.

Example: Writing a Callback Function
This example implements a simple callback function that displays the type
of event that triggered the callback and the time the callback occurred. To
illustrate passing application-specific arguments, the example callback
function accepts as an additional argument a text string and includes this
text string in the display output. To see this function used with a callback
property, see “Specifying the Value of Callback Function Properties” on page
22-17.

function my_callback_fcn(obj, event, string_arg)

txt1 = ' event occurred at ';
txt2 = string_arg;

event_type = event.Type;

22-16

Creating and Executing Callback Functions

event_time = datestr(event.Data.time);

msg = [event_type txt1 event_time];
disp(msg)
disp(txt2)

Specifying the Value of Callback Function Properties
You associate a callback function with a specific event by setting the value of
the appropriate callback property. You can specify the callback function as
a cell array or function handle. If your callback function accepts additional
arguments, you must use a cell array.

The following table shows the syntax for several sample callback functions
and describes how you call them.

Callback Function Syntax
How to Specify as a Property
Value for Object t

function myfile t.StartFcn = @myfile

function myfile(obj, event) t.StartFcn = @myfile

function myfile(obj, event,
arg1, arg2)

t.StartFcn = {@myfile, 5, 6}

This example illustrates several ways you can specify the value of timer object
callback function properties, some with arguments and some without. To see
the code of the callback function, my_callback_fcn, see “Example: Writing a
Callback Function” on page 22-16:

1 Create a timer object.

t = timer('StartDelay', 4, 'Period', 4, 'TasksToExecute', 2, ...
'ExecutionMode', 'fixedRate');

2 Specify the value of the StartFcn callback. Note that the example specifies
the value in a cell array because the callback function needs to access
arguments passed to it:

t.StartFcn = {@my_callback_fcn, 'My start message'};

22-17

22 Program Scheduling

3 Specify the value of the StopFcn callback. Again, the value is specified in a
cell array because the callback function needs to access the arguments passed
to it:

t.StopFcn = { @my_callback_fcn, 'My stop message'};

4 Specify the value of the TimerFcn callback. The example specifies the
MATLAB commands in a text string:

t.TimerFcn = @(x,y)disp('Hello World!');

5 Start the timer object:

start(t)

The example outputs the following.

StartFcn event occurred at 10-Mar-2004 17:16:59
My start message
Hello World!
Hello World!
StopFcn event occurred at 10-Mar-2004 17:16:59
My stop message

6 Delete the timer object after you are finished with it.

delete(t)

See Also timer

22-18

Timer Object Execution Modes

Timer Object Execution Modes

In this section...

“Executing a Timer Callback Function Once” on page 22-19

“Executing a Timer Callback Function Multiple Times” on page 22-20

“Handling Callback Function Queuing Conflicts” on page 22-21

Executing a Timer Callback Function Once
The timer object supports several execution modes that determine how it
schedules the timer callback function (TimerFcn) for execution. You specify
the execution mode by setting the value of the ExecutionMode property.

To execute a timer callback function once, set the ExecutionMode property to
'singleShot'. This is the default execution mode. In this mode, the timer
object starts the timer and, after the time period specified in the StartDelay
property elapses, adds the timer callback function (TimerFcn) to the MATLAB
execution queue. When the timer callback function finishes, the timer stops.

The following figure graphically illustrates the parts of timer callback
execution for a singleShot execution mode. The shaded area in the figure,
labelled queue lag, represents the indeterminate amount of time between
when the timer adds a timer callback function to the MATLAB execution
queue and when the function starts executing. The duration of this lag is
dependent on what other processing MATLAB happens to be doing at the time.

Timer Callback Execution (singleShot Execution Mode)

22-19

22 Program Scheduling

Executing a Timer Callback Function Multiple Times
The timer object supports three multiple-execution modes:

• 'fixedRate'

• 'fixedDelay'

• 'fixedSpacing'

In many ways, these execution modes operate the same:

• The TasksToExecute property specifies the number of times you want the
timer to execute the timer callback function (TimerFcn).

• The Period property specifies the amount of time between executions of
the timer callback function.

• The BusyMode property specifies how the timer object handles queuing of
the timer callback function when the previous execution of the callback
function has not completed. See “Handling Callback Function Queuing
Conflicts” on page 22-21 for more information.

The execution modes differ only in where they start measuring the time
period between executions. The following table describes these differences.

Execution
Mode Description

'fixedRate' Time period between executions begins immediately after
the timer callback function is added to the MATLAB
execution queue.

'fixedDelay' Time period between executions begins when the timer
function callback actually starts executing, after any time
lag due to delays in the MATLAB execution queue.

'fixedSpacing' Time period between executions begins when the timer
callback function finishes executing.

The following figure illustrates the difference between these modes. Note that
the amount of time between executions (specified by the Period property)
remains the same. Only the point at which execution begins is different.

22-20

Timer Object Execution Modes

Differences Between Execution Modes

Handling Callback Function Queuing Conflicts
At busy times, in multiple-execution scenarios, the timer may need to add the
timer callback function (TimerFcn) to the MATLAB execution queue before
the previously queued execution of the callback function has completed. You
can determine how the timer object handles this scenario by setting the
BusyMode property to use one of these modes:

• “Drop Mode (Default)” on page 22-21

• “Error Mode” on page 22-23

• “Queue Mode” on page 22-25

Drop Mode (Default)
If you specify 'drop' as the value of the BusyMode property, the timer object
adds the timer callback function to the execution queue only when the queue
is empty. If the execution queue is not empty, the timer object skips the
execution of the callback.

For example, suppose you create a timer with a period of 1 second, but a
callback that requires at least 1.6 seconds, as shown here for mytimer.m.

22-21

22 Program Scheduling

function mytimer()
t = timer;

t.Period = 1;
t.ExecutionMode = 'fixedRate';
t.TimerFcn = @mytimer_cb;
t.BusyMode = 'drop';
t.TasksToExecute = 5;
t.UserData = tic;

start(t)
end

function mytimer_cb(h,~)
timeStart = toc(h.UserData)
pause(1.6);
timeEnd = toc(h.UserData)

end

This table describes how the timer manages the execution queue.

Approximate
Elapsed
Time
(Seconds)

Action

0 Start the first execution of the callback.

1 Attempt to start the second execution of the callback. The
first execution is not complete, but the execution queue is
empty. The timer adds the callback to the queue.

1.6 Finish the first callback execution, and start the second.
This action clears the execution queue.

2 Attempt to start the third callback execution. The second
execution is not complete, but the queue is empty. The
timer adds the callback to the queue.

22-22

Timer Object Execution Modes

Approximate
Elapsed
Time
(Seconds)

Action

3 Attempt to start the fourth callback execution. The third
callback is in the execution queue, so the timer drops this
execution of the function.

3.2 Finish the second callback and start the third, clearing the
execution queue.

4 Attempt to start another callback execution. Because the
queue is empty, the timer adds the callback to the queue.
This is the fifth attempt, but only the fourth instance that
will run.

4.8 Finish the third execution and start the fourth instance,
clearing the queue.

5 Attempt to start another callback. An instance is running,
but the execution queue is empty, so the timer adds it to
the queue. This is the fifth instance that will run.

6 Do nothing: the value of the TasksToExecute property is 5,
and the fifth instance to run is in the queue.

6.4 Finish the fourth callback execution and start the fifth.

8 Finish the fifth callback execution.

Error Mode
The 'error' mode for the BusyMode property is similar to the 'drop' mode:
In both modes, the timer allows only one instance of the callback in the
execution queue. However, in 'error' mode, when the queue is nonempty,
the timer calls the function that you specify using the ErrorFcn property, and
then stops processing. The currently running callback function completes, but
the callback in the queue does not execute.

For example, modify mytimer.m (described in the previous section) so that it
includes an error handling function and sets BusyMode to 'error'.

function mytimer()

22-23

22 Program Scheduling

t = timer;

t.Period = 1;
t.ExecutionMode = 'fixedRate';
t.TimerFcn = @mytimer_cb;
t.ErrorFcn = @myerror;
t.BusyMode = 'error';
t.TasksToExecute = 5;
t.UserData = tic;

start(t)
end

function mytimer_cb(h,~)
timeStart = toc(h.UserData)
pause(1.6);
timeEnd = toc(h.UserData)

end

function myerror(h,~)
disp('Reached the error function')

end

This table describes how the timer manages the execution queue.

Approximate
Elapsed
Time
(Seconds)

Action

0 Start the first execution of the callback.

1 Attempt to start the second execution of the callback. The
first execution is not complete, but the execution queue is
empty. The timer adds the callback to the queue.

1.6 Finish the first callback execution, and start the second.
This action clears the execution queue.

22-24

Timer Object Execution Modes

Approximate
Elapsed
Time
(Seconds)

Action

2 Attempt to start the third callback execution. The second
execution is not complete, but the queue is empty. The
timer adds the callback to the queue.

3 Attempt to start the fourth callback execution. The third
callback is in the execution queue. The timer does not
execute the third callback, but instead calls the error
handling function.

3.2 Finish the second callback and start the error handling
function.

Queue Mode
If you specify 'queue', the timer object waits until the currently executing
callback function finishes before queuing the next execution of the timer
callback function.

In 'queue' mode, the timer object tries to make the average time between
executions equal the amount of time specified in the Period property. If the
timer object has to wait longer than the time specified in the Period property
between executions of the timer function callback, it shortens the time period
for subsequent executions to make up the time.

See Also timer

22-25

22 Program Scheduling

Deleting Timer Objects from Memory

In this section...

“Deleting One or More Timer Objects” on page 22-26

“Testing the Validity of a Timer Object” on page 22-26

Deleting One or More Timer Objects
When you are finished with a timer object, delete it from memory using the
delete function:

delete(t)

When you delete a timer object, workspace variables that referenced the object
remain. Deleted timer objects are invalid and cannot be reused. Use the clear
command to remove workspace variables that reference deleted timer objects.

To remove all timer objects from memory, enter

delete(timerfind)

For information about the timerfind function, see “Finding Timer Objects
in Memory” on page 22-27.

Testing the Validity of a Timer Object
To test if a timer object has been deleted, use the isvalid function. The
isvalid function returns logical 0 (false) for deleted timer objects:

isvalid(t)
ans =

0

22-26

Finding Timer Objects in Memory

Finding Timer Objects in Memory

In this section...

“Finding All Timer Objects” on page 22-27

“Finding Invisible Timer Objects” on page 22-27

Finding All Timer Objects
To find all the timer objects that exist in memory, use the timerfind function.
This function returns an array of timer objects. If you leave off the semicolon,
and there are multiple timer objects in the array, timerfind displays
summary information in a table:

t1 = timer;
t2 = timer;
t3 = timer;
t_array = timerfind

Timer Object Array

Index: ExecutionMode: Period: TimerFcn: Name:
1 singleShot 1 '' timer-3
2 singleShot 1 '' timer-4
3 singleShot 1 '' timer-5

Using timerfind to determine all the timer objects that exist in memory can
be helpful when deleting timer objects.

Finding Invisible Timer Objects
If you set the value of a timer object’s ObjectVisibility property to
'off', the timer object does not appear in listings of existing timer objects
returned by timerfind. The ObjectVisibility property provides a way for
application developers to prevent end-user access to the timer objects created
by their application.

Objects that are not visible are still valid. If you have access to the object (for
example, from within the file that created it), you can set its properties. To

22-27

22 Program Scheduling

retrieve a list of all the timer objects in memory, including invisible ones, use
the timerfindall function.

22-28

23

Performance

• “Analyzing Your Program’s Performance” on page 23-2

• “Profiling for Improving Performance” on page 23-4

• “Determining Profiler Coverage” on page 23-27

• “Techniques for Improving Performance” on page 23-29

• “Vectorization” on page 23-33

23 Performance

Analyzing Your Program’s Performance

In this section...

“Overview” on page 23-2

“Stopwatch Timer Functions” on page 23-2

Overview
The MATLAB Profiler and the stopwatch timer functions enable you to get
back information on how your program is performing and help you identify
areas that need improvement. The Profiler can be more useful in measuring
relative execution time and in identifying specific performance bottlenecks in
your code, while the stopwatch functions tend to be more useful for providing
absolute time measurements.

Stopwatch Timer Functions
If you just need to get an idea of how long your program (or a portion of
it) takes to run, or to compare the speed of different implementations of a
program, you can use the stopwatch timer functions, tic and toc. Invoking
tic starts the timer, and the first subsequent toc stops it and reports the
time elapsed between the two.

Use tic and toc as shown here:

tic
-- run the program section to be timed --

toc

Keep in mind that tic and toc measure overall elapsed time. Make sure that
no other applications are running in the background on your system that
could affect the timing of your MATLAB programs.

Measuring Smaller Programs
Shorter programs sometimes run too fast to get useful data from tic and toc.
When this is the case, try measuring the program running repeatedly in a
loop, and then average to find the time for a single run:

23-2

Analyzing Your Program’s Performance

tic
for k = 1:100

-- run the program --
end

toc

Using tic and toc Versus the cputime Function
Although it is possible to measure performance using the cputime function,
it is recommended that you use the tic and toc functions for this purpose
exclusively. It has been the general rule for CPU-intensive calculations
run on Microsoft Windows machines that the elapsed time using cputime
and the elapsed time using tic and toc are close in value, ignoring any
first time costs. There are cases however that show a significant difference
between these two methods. For example, in the case of a Pentium 4 with
hyperthreading running Windows, there can be a significant difference
between the values returned by cputime versus tic and toc.

Related
Examples

• “Profiling for Improving Performance” on page 23-4

23-3

23 Performance

Profiling for Improving Performance

In this section...

“What Is Profiling?” on page 23-4

“Profiling Process and Guidelines” on page 23-5

“Using the Profiler” on page 23-6

“Profile Summary Report” on page 23-12

“Profile Detail Report” on page 23-14

“The profile Function” on page 23-20

What Is Profiling?
Profiling is a way to measure where a program spends time. To assist you in
profiling, MATLAB software provides a graphical user interface, called the
Profiler, which is based on the results returned by the profile function.
Once you identify which functions are consuming the most time, you can
determine why you are calling them. Then, look for ways to minimize their
use and thus improve performance. It is often helpful to decide whether the
number of times the code calls a particular function is reasonable. Because
programs often have several layers, your code might not explicitly call the
most time-consuming functions. Rather, functions within your code might
be calling other time-consuming functions that can be several layers down
in the code. In this case it is important to determine which of your functions
are responsible for such calls.

Profiling helps to uncover performance problems that you can solve by:

• Avoiding unnecessary computation, which can arise from oversight

• Changing your algorithm to avoid costly functions

• Avoiding recomputation by storing results for future use

When profiling spends most of its time on calls to a few built-in functions, you
have probably optimized the code as much as you can.

23-4

Profiling for Improving Performance

Note When using the Parallel Computing Toolbox™ software, you can use
the parallel profiler to profile parallel jobs. For details, see “Profiling Parallel
Code”.

Profiling Process and Guidelines
Here is a general process you can follow to use the Profiler to improve
performance in your code. This section includes the following topics:

• Using Profiling as a Debugging Tool

• “Using Profiling to Understand an Unfamiliar File” on page 23-6

Tip Premature optimization can increase code complexity unnecessarily
without providing a real gain in performance. Your first implementation
should be as simple as possible. Then, if speed is an issue, use profiling to
identify bottlenecks.

1 In the summary report produced by the Profiler, look for functions that used
a significant amount of time or are called most frequently. See “Profile
Summary Report” on page 23-12 for more information.

2 View the detail report produced by the Profiler for those functions and look for
the lines that use the most time or are called most often. See “Profile Detail
Report” on page 23-14 for more information.

Consider keeping a copy of your first detail report as a basis for comparison.
After you change the function file, run the Profiler again and compare the
reports.

3 Determine whether there are changes you can make to the lines most called
or the most time-consuming lines to improve performance.

For example, if you have a load statement within a loop, load is called every
time the loop is called. You might be able to save time by moving the load
statement so it is before the loop and therefore is called only once.

23-5

23 Performance

4 Click the links to the files and make the changes you identified for potential
performance improvement. Save the files and run clear all. Run the
Profiler again and compare the results to the original report. Note that there
are inherent time fluctuations that are not dependent on your code. If you
profile the identical code twice, you can get slightly different results each time.

5 Repeat this process to continue improving the performance.

Using Profiling as a Debugging Tool
The Profiler is a useful tool for isolating problems in your code.

For example, if a particular section of a file did not run, you can look at the
detail reports to see what lines did run. The detail report might point you
to the problem.

You can also view the lines that did not run to help you develop test cases
that exercise that code.

If you get an error in the file when profiling, the Profiler provides partial
results in the reports. You can see what ran and what did not to help you
isolate the problem. Similarly, you can do this if you stop the execution using
Ctrl+C. Using Ctrl+C can be useful when a file is taking much more time
to run than expected.

Using Profiling to Understand an Unfamiliar File
For a lengthy MATLAB code file that you did not create, or with which you
are unfamiliar, use the Profiler to see how the file actually works. Use the
Profiler detail reports to see the lines called.

If there is an existing GUI tool (or file) like one that you want to create, start
profiling, use the tool, then stop profiling. Look through the Profiler detail
reports to see what functions and lines ran. This helps you determine the
lines of code in the file that are most like the code you want to create.

Using the Profiler
Use the Profiler to help you determine where you can modify your code to
make performance improvements. The Profiler is a tool that shows you where
a file is spending its time. This section covers:

23-6

Profiling for Improving Performance

• “Opening the Profiler” on page 23-7

• “Running the Profiler” on page 23-7

• “Profiling a Graphical User Interface” on page 23-11

• “Profiling Statements from the Command Window” on page 23-11

• “Changing Fonts for the Profiler” on page 23-12

For information about the reports generated by the Profiler, see “Profile
Summary Report” on page 23-12 and “Profile Detail Report” on page 23-14.

Opening the Profiler
You can open the Profiler using several different methods:

• Select one or more statements in the Command History window, right-click
to view the context menu, and then select Profile Code.

• Type profile viewer in the Command Window.

Running the Profiler
To profile a MATLAB code file or a line of code:

1 If your system uses Intel® multi-core chips, consider restricting the active
number of CPUs to one.

See one of the following for details:

• “Intel Multi-Core Processors — Setting for Most Accurate Profiling on
Windows Systems” on page 23-9

• “Intel Multi-Core Processors — Setting for Most Accurate Profiling on
Linux Systems” on page 23-10

2 In the Command Window, type profile viewer.

3 Do one of the following in the Profiler:

• For a statement you have not profiled in the current MATLAB session:

23-7

23 Performance

In the Run this code field, type the statement you want to run.

For example, you can run the Lotka-Volterra example, which is provided
with MATLAB examples (lotkademo):

[t,y] = ode23('lotka',[0 2],[20;20])

• For a statement you previously profiled in the current MATLAB session:

1 Select the statement from the list box—MATLAB automatically starts
profiling the code.

2 Skip to step 5.

4 Click Start Profiling.

While the Profiler is running, the Profile time indicator is green and the
number of seconds it reports increases. The Profile time indicator appears
at the top right of the Profiler window.

When the Profiler finishes, the Profile time indicator becomes dark red and
shows the length of time the Profiler ran. The statements you profiled display
as having been executed in the Command Window.

This time is not the actual time that your statements took to run. It is the wall
clock (or tic/toc) time elapsed from when you clicked Start Profiling until
profiling stops. If the time reported is very different from what you expected
(for example, hundreds of seconds for a simple statement), you might have had
profiling on longer than you realize. This time also does not match the time
reported in Profiler Summary report statistics, which is based on cpu time by
default, not wall clock time. To view profile statistics based on wall clock time,
use the profile function with the -timer real option as shown in “Using the
profile Function to Change the Time Type Used by the Profiler” on page 23-25.

23-8

Profiling for Improving Performance

5 When profiling is complete, the Profile Summary report appears in the
Profiler window. For more information about this report, see “Profile
Summary Report” on page 23-12.

6 Reset the number of active CPUs to the original setting if you restricted the
number in step 1.

Intel Multi-Core Processors — Setting for Most Accurate Profiling on
Windows Systems. If your system uses Intel multi-core chips, and you plan
to profile using CPU time, set the number of active CPUs to one before you
start profiling. This results in the most accurate and efficient profiling.

1 Open Windows Task Manager.

2 On the Processes tab, right-click MATLAB.exe and then click Set Affinity.

The Processor Affinity dialog box opens.

3 In the Processor Affinity dialog box, note the current settings, and then
clear all the CPUs except one.

Your Processor Affinity dialog box should appear like the following image.

4 Click OK.

23-9

23 Performance

5 Reset the state of the Profiler so that it recognizes the processor affinity
changes you made. The easiest way to do so is to change the Profiler
timer setting to real and then back to cpu, by issuing the following in the
Command Window:

profile -timer real
profile -timer cpu

Remember to set the number of CPUs back to their original settings when you
finish profiling. Rerun the preceding steps, and restore the original selections
in the Processor Affinity dialog box in step 3.

Intel Multi-Core Processors — Setting for Most Accurate Profiling on
Linux® Systems. If your system uses Intel multi-core chips, and you plan to
profile using CPU time, set the number of active CPUs to one before you start
profiling. This results in the most accurate and efficient profiling.

For example, to set the processor affinity to one you can use the Linux
taskset command, as follows:

1 Get the process ID (PID) of the currently running MATLAB instance:

ps -C MATLAB
PID TTY TIME CMD
8745 pts/1 00:00:50 MATLAB

The PID in this example is 8745.

2 Call the Linux taskset command to get the current number of active CPUs
for the MATLAB process:

taskset -pc 8745
pid 8745's current affinity list: 0-3

The -p option specifies that taskset operate on an existing PID, instead of
creating a new task. The -c option lists the processor numbers.

3 Call the Linux taskset command again — this time to set the processor
affinity for the MATLAB process to one CPU (that is, CPU #0):

taskset -pc 0 8745
pid 8745's current affinity list: 0-3

23-10

Profiling for Improving Performance

pid 8745's new affinity list: 0

For more information on the syntax of taskset, execute man taskset from
a Linux terminal.

Reset the state of the Profiler so that it recognizes the processor affinity
changes you made. The easiest way to do this is to change the Profiler
timer setting to real and then back to cpu, by issuing the following in the
Command Window:

profile -timer real
profile -timer cpu

Remember to set the number of CPUs back to its original setting when you
finish profiling. Rerun the preceding steps, and then restore the original
number of CPUs returned in step 2.

Profiling a Graphical User Interface
You can run the Profiler for a graphical user interface, such as the Filter
Design and Analysis tool included with Signal Processing Toolbox. You can
also run the Profiler for an interface you created, such as one built using
GUIDE.

To profile a graphical user interface:

1 In the Profiler, click Start Profiling. Make sure that no code appears in the
Run this code field.

2 Start the graphical user interface. (If you do not want to include its startup
process in the profile, do not click Stop Profiling, step 1, until after you
start the graphical interface.)

3 Use the graphical interface. When you finish, click Stop Profiling in the
Profiler.

The Profile Summary report appears in the Profiler.

Profiling Statements from the Command Window
To profile more than one statement:

23-11

23 Performance

1 In the Profiler, clear the Run this code field and click Start Profiling.

2 In the Command Window, enter and run the statements you want to profile.

3 After running all the statements, click Stop Profiling in the Profiler.

The Profile Summary report appears in the Profiler.

Changing Fonts for the Profiler
To change the fonts used in the Profiler:

1 On the Home tab, in the Environment section, click Preferences .

2 Select Fonts > Custom in the left pane.

3 Under Desktop tools, select Profiler and Comparison Tool.

4 Under Font to use, select the font. For more information, click the Help
button in the dialog box.

5 Click Apply or OK. The Profiler font reflects the changes.

Profile Summary Report
The Profile Summary report presents statistics about the overall execution of
the function and provides summary statistics for each function called. The
report formats these values in four columns.

• Function Name — A list of all the functions called by the profiled
function. When first displayed, the functions are listed in order by the
amount of time they took to process. To sort the functions alphabetically,
click the Function Name link at the top of the column.

• Calls — The number of times the function was called while profiling was
on. To sort the report by the number of times functions were called, click
the Calls link at the top of the column.

• Total Time — The total time spent in a function, including all child
functions called, in seconds. The time for a function includes time spent
on child functions. To sort the functions by the amount of time they
consumed, click the Total Time link at the top of the column. By default,

23-12

Profiling for Improving Performance

the summary report displays profiling information sorted by Total Time.
Be aware that the Profiler itself uses some time, which is included in the
results. Also note that total time can be zero for files whose running time
was inconsequential.

• Self Time— The total time spent in a function, not including time for any
child functions called, in seconds. If MATLAB can determine the amount of
time spent for profiling overhead, MATLAB excludes it from the self time
also. (MATLAB excludes profiling overhead from the total time and the
time for individual lines in the Profile Detail Report as well.)

The bottom of the Profiler page contains a message like one of the following,
depending on whether MATLAB can determine the profiling overhead:

- Self time is the time spent in a function excluding:

• The time spent in its child functions

• Most of the overhead resulting from the process of profiling

In the present run, self time excludes 0.240 secs of profiling overhead.
The amount of remaining overhead reflected in self time cannot be
determined, and therefore is not excluded.

- Self time is the time spent in a function excluding the time spent in its
child functions. Self time also includes some overhead resulting from the
process of profiling.

To sort the functions by this time value, click the Self Time link at the
top of the column.

• Total Time Plot — Graphic display showing self time compared to total
time.

The following is an image of the summary report for the Lotka-Volterra model
used in “Example: Using the profile Function” on page 23-21.

In the summary report, you can:

• Print it, by clicking the Print button .

• Get more detailed information about a particular function by clicking its
name in the Function Name column. See “Profile Detail Report” on page
23-14 for more information.

23-13

23 Performance

• Sort by a given column by clicking the name of the column. For example,
click to sort by the names of the functions included in the
summary report.

Profile Detail Report
The Profile Detail report shows profiling results for a selected function that
was called during profiling. A Profile Detail report has seven sections. The
topics that follow describe each section. By default, the Profile Detail report
includes all seven sections, although, depending on the function, not every
section contains data. To return to the Profile Summary report from the
Profile Detail report, click in the toolbar of the Profile window.

The following topics provide details about opening and using a Profile Detail
Report:

• “Opening the Profile Detail Report” on page 23-15

• “Controlling the Contents of the Detail Report Display” on page 23-15

23-14

Profiling for Improving Performance

• “Profile Detail Report Header” on page 23-15

• “Parent Functions” on page 23-16

• “Busy Lines” on page 23-16

• “Child Functions” on page 23-17

• “Code Analyzer Results” on page 23-18

• “File Coverage” on page 23-19

• “Function Listing” on page 23-19

Opening the Profile Detail Report
To open the Profile Detail Report:

1 Create a Profile Summary report, as described in “Using the Profiler” on
page 23-6.

2 Click a function name listed in the Profile Summary report.

Controlling the Contents of the Detail Report Display
To specify which sections the Profile Detail Report includes:

1 Select report options from the set of check boxes at the top of the report.

2 Click the Refresh button.

Profile Detail Report Header
The detail report header includes:

• The name of the function profiled

• The number of times the profiled function was called in the parent function

• The amount of time the profiled function used

• A link that opens the function in your default text editor

• A link that copies the report to a separate window

23-15

23 Performance

Creating a copy of the report is helpful when you change the file, run the
Profiler for the updated file, and compare the Profile Detail reports for the
two runs. Do not change files provided with products from MathWorks,
that is, files in the matlabroot/toolbox folders.

Parent Functions
To include the Parents section in the Detail Report, select the Show parent
functions check box. This section of the report provides information about
the parent functions, with links to their detail reports. Click the name of a
parent function to open a Detail Report for that parent function.

Busy Lines
To include information about the lines of code that used the most amount of
processing time in the detail report, select the Show busy lines check box.

23-16

Profiling for Improving Performance

Child Functions
To include the Children section of the detail report, select the Show child
functions check box. This section of the report lists all the functions called
by the profiled function. If the called function is a MATLAB code file, you can
view the source code for the function by clicking its name.

23-17

23 Performance

Code Analyzer Results
To include the Code Analyzer results section in the detail report display,
select the Show Code Analyzer results check box. This section of the
report provides information about problems and potential improvements
for the function.

23-18

Profiling for Improving Performance

File Coverage
To include the Coverage results section in the detail report display, select
the Show file coverage check box. This section of the report provides
statistical information about the number of lines in the code that executed
during the profile run.

Function Listing
To include the Function listing section in the detail report display, select
the Show function listing check box. If the file is a MATLAB code file, the
Profile Detail report includes three columns:

• The first column lists the execution time for each line.

• The second column lists the number of times the line was called

• The third column specifies the source code for the function.

In the function listing, the color of the text indicates the following:

• Green — Comment lines

• Black — Lines of code that executed

• Gray — Lines of code that did not execute

23-19

23 Performance

By default, the Profile Detail report highlights lines of code with the longest
execution time. The darker the highlighting, the longer the line of code took
to execute.

To change the lines of code highlighted based on other criteria, use the
drop-down menu in this section of the detail report. The color of the
highlighting changes, depending on the drop-down option you choose. You
can choose to highlight lines of code called the most, lines of code that were
(or were not) executed, or lines called out by the Code Analyzer. Or, you can
turn off highlighting by selecting none.

The following image shows that lines highlight in blue when you select
coverage from the drop-down menu.

The profile Function
The Profiler is based on the results returned by the profile function. The
profile function provides some features that are not available in the GUI.
For example, use the profile function to specify that statistics display the
time it takes for statements to run as clock time, instead of CPU time.

This section includes the following topics with respect to the profile function:

• “Example: Using the profile Function” on page 23-21

• “Accessing profile Function Results” on page 23-22

23-20

Profiling for Improving Performance

• “Saving profile Function Reports” on page 23-24

• “Using the profile Function to Change the Time Type Used by the Profiler”
on page 23-25

Example: Using the profile Function
This example demonstrates how to run profile:

1 To start profile, type the following in the Command Window:

profile on

2 Execute a MATLAB code file. This example runs the Lotka-Volterra
predator-prey population model. For more information about this model, type
lotkademo, which runs a demonstration.

[t,y] = ode23('lotka',[0 2],[20;20]);

3 Generate the profile report and display it in the Profiler window. This
suspends profile.

profile viewer

4 Restart profile, without clearing the existing statistics.

profile resume

The profile function is now ready to continue gathering statistics for
any more files you run. It will add these new statistics to those statistics
generated in the previous steps.

5 Stop profile when you finish gathering statistics.

profile off

6 To view the profile data, call profile specifying the 'info' argument. The
profile function returns data in a structure.

p = profile('info')

p =

23-21

23 Performance

FunctionTable: [33x1 struct]
FunctionHistory: [2x0 double]
ClockPrecision: 1.0000e-03

ClockSpeed: 3.0000e+09
Name: 'MATLAB'

Overhead: 0

The FunctionTable indicates that statistics were gathered for 33 functions.

7 To save the profile report, use the profsave function. This function stores
the profile information in separate HTML files, for each function listed in
FunctionTable of p.

profsave(p)

By default, profsave puts these HTML files in a subfolder of the current
folder named profile_results, and displays the summary report in your
system browser. You can specify another folder name as an optional second
argument to profsave.

Accessing profile Function Results
The profile function returns results in a structure. This example illustrates
how you can access these results:

1 To start profile, specifying the history option, type the following in the
Command Window:

profile on -history

The history option specifies that the report include information about the
sequence of functions as they are entered and exited during profiling.

2 Execute a MATLAB code file. This example runs the Lotka-Volterra
predator-prey population model. For more information about this model, type
lotkademo, which runs a demonstration.

[t,y] = ode23('lotka',[0 2],[20;20]);

3 Stop profiling.

23-22

Profiling for Improving Performance

profile off

4 Get the structure containing profile results.

stats = profile('info')
stats =

FunctionTable: [33x1 struct]
FunctionHistory: [2x880 double]
ClockPrecision: 1.0000e-03

ClockSpeed: 3.0000e+09
Name: 'MATLAB'

Overhead: 0

5 The FunctionTable field is an array of structures, where each structure
represents a MATLAB function (M-function), MATLAB local function,
MEX-function, or, because the builtin option is specified, a MATLAB built-in
function.

stats.FunctionTable

ans =

33x1 struct array with fields:
CompleteName
FunctionName
FileName
Type
Children
Parents
ExecutedLines
IsRecursive
TotalRecursiveTime
PartialData
NumCalls
TotalTime

6 View the second structure in FunctionTable.

stats.FunctionTable(2)

23-23

23 Performance

ans =

CompleteName: [1x95 char]
FunctionName: 'ode23'

FileName: [1x89 char]
Type: 'M-function'

Children: [6x1 struct]
Parents: [0x1 struct]

ExecutedLines: [139x3 double]
IsRecursive: 0

TotalRecursiveTime: 0
PartialData: 0

NumCalls: 1
TotalTime: 0.0920

7 To view the history data generated by profile, view the FunctionHistory,
for example, stats.FunctionHistory. The history data is a 2-by-n array.
The first row contains Boolean values, where 0 (zero) means entrance into
a function and 1 means exit from a function. The second row identifies the
function being entered or exited by its index in the FunctionTable field. To
see how to create a formatted display of history data, see the example on
the profile reference page.

Saving profile Function Reports
To save the profile report, use the profsave function.

This function stores the profile information in separate HTML files, for each
function listed in the FunctionTable field of the structure, stats.

profsave(stats)

By default, profsave puts these HTML files in a subfolder of the current
folder named profile_results. You can specify another folder name as an
optional second argument to profsave.

profsave(stats,'mydir')

23-24

Profiling for Improving Performance

Using the profile Function to Change the Time Type Used by
the Profiler
By default, MATLAB generates the Profiler Summary report using CPU time,
as opposed to real (wall clock) time. This example illustrates how you can
direct MATLAB to use real time instead.

Specify that the Profiler use real time instead, by using the profile function
with the -timer real option, as shown in this example:

1 If the Profiler is currently open, close the Profiler, and if prompted, stop
profiling.

2 Set the timer to real time by typing the following in the Command Window:

profile on -timer real

3 Run the file that you want to profile. This example runs the Lotka-Volterra
predator-prey population model.

[t,y] = ode23('lotka',[0 2],[20;20]);

4 Open the Profiler by typing the following in the Command Window:

profile viewer

The Profiler opens and indicates that it is using real time, as shown in the
following image.

5 To change the timer back to using CPU time:

23-25

23 Performance

a Close the Profiler, and if prompted, stop profiling.

b Type the following in the Command Window:

profile on -timer cpu

c Type the following in the Command Window to reopen the Profiler:

profile viewer

23-26

Determining Profiler Coverage

Determining Profiler Coverage
When you run the Profiler on a file, some code might not run, such as a block
containing an if statement.

To determine how much of a file ran when you profiled it, run the Coverage
Report:

1 In the Command Window, type profile viewer.

2 Profile a MATLAB code file in the Profiler.

For detailed instructions, see “Profiling for Improving Performance” on page
23-4.

3 Ensure the Profiler is not currently profiling.

The Profiler displays a Start Profiling button when the Profiler is not
running. If the Profiler is running, then do one of the following:

• Wait for it to stop profiling before proceeding to step 4.

• Click Stop Profiling.

The Stop Profiling button is available only when the Profiler is running.

4 Use the Current Folder browser to navigate to the folder containing the file
for which you ran the Profiler.

Note You cannot run reports when the path is a UNC (Universal Naming
Convention) path; that is, a path that starts with \\. Instead, use an actual
hard drive on your system, or a mapped network drive.

5 On the Current Folder browser, click , and then selectReports > Coverage
Report.

The Profiler Coverage Report appears, providing a summary of coverage
for the file you profiled. In the image that follows, the profiled file is
lengthofline2.m.

23-27

23 Performance

6 Click the Coverage link to see the Profile Detail Report for the file.

23-28

Techniques for Improving Performance

Techniques for Improving Performance

In this section...

“Preallocating Arrays” on page 23-29

“Assigning Variables” on page 23-30

“Using Appropriate Logical Operators” on page 23-31

“Additional Tips on Improving Performance” on page 23-31

Preallocating Arrays
for and while loops that incrementally increase the size of a data structure
each time through the loop can adversely affect performance and memory
use. Repeatedly resizing arrays often requires MATLAB to spend extra time
looking for larger contiguous blocks of memory, and then moving the array
into those blocks. Often, you can improve code execution time by preallocating
the maximum amount of space required for the array.

The following code displays the amount of time needed to create a scalar
variable, x, and then to gradually increase the size of x in a for loop.

tic
x = 0;
for k = 2:1000000

x(k) = x(k-1) + 5;
end
toc

Elapsed time is 0.301528 seconds.

If you preallocate a 1-by-1,000,000 block of memory for x and initialize it to
zero, then the code runs much faster because there is no need to repeatedly
reallocate memory for the growing data structure.

tic
x = zeros(1, 1000000);
for k = 2:1000000

x(k) = x(k-1) + 5;
end

23-29

23 Performance

toc

Elapsed time is 0.011938 seconds.

Use the appropriate preallocation function for the kind of array you want
to initialize:

• zeros for numeric arrays

• cell for character arrays

Preallocating a Nondouble Matrix
When you preallocate a block of memory to hold a matrix of some type other
than double, avoid using the method

A = int8(zeros(100));

This statement preallocates a 100-by-100 matrix of int8, first by creating a
full matrix of double values, and then by converts each element to int8.
Creating the array as int8 values saves time and memory. For example:

A = zeros(100, 'int8');

Assigning Variables
For best performance, keep the following suggestions in mind when you
assign values to variables.

• If you need to store data of a different type, it is advisable to create a new
variable. Changing the class or array shape of an existing variable slows
MATLAB down because it takes extra time to process.

This code changes the type of X from double to char, which has a negative
impact on performance:

X = 23;
.

-- other code --
.

X = 'A'; % X changed from type double to char
.

-- other code --

23-30

Techniques for Improving Performance

• You should not assign a real value to a variable that already holds a
complex value, and vice versa. Assigning a complex number to a variable
that already holds a real number impacts the performance of your program.

Using Appropriate Logical Operators
When performing a logical AND or OR operation, you have a choice of whether
to use short-circuit operators.

Operator Description

&, | Perform logical AND and OR on arrays element by
element

&&, || Perform logical AND and OR on scalar values with
short-circuiting

In if and while statements, it is more efficient to use the short-circuit
operators, && and ||, because these operators often do not evaluate the entire
logical expression. For example, whenever the first input argument is not
numeric, MATLAB evaluates only the first part of this expression.

if (isnumeric(varargin{1})) && (ischar(varargin{2}))

See “Short-Circuit Operators” on page 2-10 in the MATLAB documentation
for a discussion about using && and ||.

Additional Tips on Improving Performance
If the performance of your program remains a concern, then consider the
following suggestions:

• Split large script files into smaller ones, having the first file call the second
if necessary.

• Construct separate functions (or local functions and nested functions) from
the larger chunks of code.

• If you have overly complicated functions or expressions, use simpler ones
to reduce size. Simpler functions often make good utility functions that
you can share with others.

• Use functions instead of scripts because they are generally faster.

23-31

23 Performance

• Vectorize your code to take advantage of the full functionality of MATLAB.

• Use a sparse matrix structure to vectorize code without requiring large
amounts of memory.

• Avoid running large processes in the background while executing your
program in MATLAB.

• Avoid overloading MATLAB built-in functions on any standard MATLAB
data classes because this can negatively affect performance.

Concepts • “Analyzing Your Program’s Performance” on page 23-2
• “Profiling for Improving Performance” on page 23-4
• “Vectorization” on page 23-33

23-32

Vectorization

Vectorization

In this section...

“Using Vectorization” on page 23-33

“Indexing Methods for Vectorization” on page 23-34

“Array Operations” on page 23-37

“Logical Array Operations” on page 23-37

“Matrix Operations” on page 23-39

“Ordering, Setting, and Counting Operations” on page 23-41

“Functions Commonly Used in Vectorizing” on page 23-43

Using Vectorization
MATLAB is optimized for operations involving matrices and vectors. The
process of revising loop-based, scalar-oriented code to use MATLAB matrix
and vector operations is called vectorization. Vectorizing your code is
worthwhile for several reasons:

• Appearance: Vectorized mathematical code appears more like the
mathematical expressions found in textbooks, making the code easier to
understand.

• Less Error Prone: Without loops, vectorized code is often shorter. Fewer
lines of code mean fewer opportunities to introduce programming errors.

• Performance: Vectorized code often runs much faster than the
corresponding code containing loops.

Vectorizing Code for General Computing
This code computes the sine of 1,001 values ranging from 0 to 10:

i = 0;
for t = 0:.01:10

i = i + 1;
y(i) = sin(t);

end

23-33

23 Performance

This is a vectorized version of the same code:

t = 0:.01:10;
y = sin(t);

The second code sample usually executes faster than the first and is a more
efficient use of MATLAB. Test execution speed on your system by creating
scripts that contain the code shown, and then use the tic and toc functions
to measure their execution time.

Vectorizing Code for Specific Tasks
This code computes the cumulative sum of a vector at every fifth element:

x = 1:10000;
ylength = (length(x) - mod(length(x),5))/5;
y(1:ylength) = 0;
for n= 5:5:length(x)

y(n/5) = sum(x(1:n));
end

Using vectorization, you can write a much more concise MATLAB process.
This code shows one way to accomplish the task:

x = 1:10000;
xsums = cumsum(x);
y = xsums(5:5:length(x));

Indexing Methods for Vectorization
Many vectorizing techniques rely on flexible MATLAB indexing methods.
Three basic types of indexing exist:

• “Subscripted Indexing” on page 23-35

• “Linear Indexing” on page 23-35

• “Logical Indexing” on page 23-36

23-34

Vectorization

Subscripted Indexing
In subscripted indexing, the index values indicate their position within
the matrix. Thus, if A = 6:10, then A([3 5]) denotes the third and fifth
elements of vector A:

A = 6:10;
A([3 5])

ans =

8 10

Multidimensional arrays or matrices use multiple index parameters for
subscripted indexing.

A = [11 12 13; 14 15 16; 17 18 19]
A(2:3,2:3)

A =

11 12 13
14 15 16
17 18 19

ans =

15 16
18 19

Linear Indexing
In linear indexing, MATLAB assigns every element of a matrix a single index
as if the entire matrix structure stretches out into one column vector.

A = [11 12 13; 14 15 16; 17 18 19];
A(6)
A([3,1,8])
A([3;1;8])

23-35

23 Performance

ans =

18

ans =

17 11 16

ans =

17
11
16

In the previous example, the returned matrix elements preserve the shape
specified by the index parameter. If the index parameter is a row vector,
MATLAB returns the specified elements as a row vector.

Note Use the functions sub2ind and ind2sub to convert between subscripted
and linear indices.

Logical Indexing
With logical indexing, the index parameter is a logical matrix that is the same
size as A and contains only 0s and 1s.

MATLAB selects elements of A that contain a 1 in the corresponding position
of the logical matrix:

A = [11 12 13; 14 15 16; 17 18 19];
A(logical([0 0 1; 0 1 0; 1 1 1]))

ans =

17
15

23-36

Vectorization

18
13
19

Array Operations
Array operators perform the same operation for all elements in the data set.
These types of operations are useful for repetitive calculations. For example,
suppose you collect the volume (V) of various cones by recording their diameter
(D) and height (H). If you collect the information for just one cone, you can
calculate the volume for that single cone:

V = 1/12*pi*(D^2)*H;

Now, collect information on 10,000 cones. The vectors D and H each contain
10,000 elements, and you want to calculate 10,000 volumes. In most
programming languages, you need to set up a loop similar to this MATLAB
code:

for n = 1000
V(n) = 1/12*pi*(D(n)^2)*H(n);

end

With MATLAB, you can perform the calculation for each element of a vector
with similar syntax as the scalar case:

%Vectorized Calculation
V = 1/12*pi*(D.^2).*H;

Note Placing a period (.) before the operators *, /, and ^, transforms them
into array operators.

Logical Array Operations
A logical extension of the bulk processing of arrays is to vectorize comparisons
and decision making. MATLAB comparison operators accept vector inputs
and return vector outputs.

23-37

23 Performance

For example, suppose while collecting data from 10,000 cones, you record
several negative values for the diameter. You can determine which values in
a vector are valid with the >= operator:

D = [-0.2 1.0 1.5 3.0 -1.0 4.2 3.14];
D >= 0

ans =

0 1 1 1 0 1 1

You can directly exploit the logical indexing power of MATLAB to select the
valid cone volumes, Vgood, for which the corresponding elements of D are
nonnegative:

Vgood = V(D >= 0);

MATLAB allows you to perform a logical AND or OR on the elements of an
entire vector with the functions all and any, respectively. You can throw a
warning if all values of D are below zero:

if all(D < 0)
warning('All values of diameter are negative.');
return;

end

MATLAB can compare two vectors of the same size, allowing you to impose
further restrictions. This code finds all the values where V is nonnegative
and D is greater than H:

V((V >= 0) & (D > H))

The resulting vector is the same size as the inputs.

To aid comparison, MATLAB contains special values to denote overflow,
underflow, and undefined operators, such as inf and nan. Logical operators
isinf and isnan exist to help perform logical tests for these special values.
For example, it is often useful to exclude NaN values from computations:

x = [2 -1 0 3 NaN 2 NaN 11 4 Inf];
xvalid = x(~isnan(x))

23-38

Vectorization

xvalid =

2 -1 0 3 2 11 4 Inf

Note Inf == Inf returns true; however, NaN == NaN always returns false.

Matrix Operations
Matrix operations act according to the rules of linear algebra. These
operations are most useful in vectorization if you are working with
multidimensional data.

Suppose you want to evaluate a function, F, of two variables, x and y.

F(x,y) = x*exp(-x2 - y2)

To evaluate this function at every combination of points in the x and y, you
need to define a grid of values:

x = -2:0.2:2;
y = -1.5:0.2:1.5;
[X,Y] = meshgrid(x,y);
F = X.*exp(-X.^2-Y.^2);

Without meshgrid, you might need to write two for loops to iterate through
vector combinations. The function ndgrid also creates number grids from
vectors, but can construct grids beyond three dimensions. meshgrid can only
construct 2-D and 3-D grids.

In some cases, using matrix multiplication eliminates intermediate steps
needed to create number grids:

x = -2:2;
y = -1:0.5:1;
x'*y

ans =

2.0000 1.0000 0 -1.0000 -2.0000

23-39

23 Performance

1.0000 0.5000 0 -0.5000 -1.0000
0 0 0 0 0

-1.0000 -0.5000 0 0.5000 1.0000
-2.0000 -1.0000 0 1.0000 2.0000

Constructing Matrices
When vectorizing code, you often need to construct a matrix with a particular
size or structure. Techniques exist for creating uniform matrices. For
instance, you might need a 5-by-5 matrix of equal elements:

A = ones(5,5)*10;

Or, you might need a matrix of repeating values:

v = 1:5;
A = repmat(v,3,1)

A =

1 2 3 4 5
1 2 3 4 5
1 2 3 4 5

The function repmat possesses flexibility in building matrices from smaller
matrices or vectors. repmat creates matrices by repeating an input matrix:

A = repmat(1:3,5,2)
B = repmat([1 2; 3 4],2,2)

A =

1 2 3 1 2 3
1 2 3 1 2 3
1 2 3 1 2 3
1 2 3 1 2 3
1 2 3 1 2 3

B =

1 2 1 2

23-40

Vectorization

3 4 3 4
1 2 1 2
3 4 3 4

The bsxfun function provides a way of combining matrices of different
dimensions. Suppose that matrix A represents test scores, the rows of which
denote different classes. You want to calculate the difference between the
average score and individual scores for each class. Your first thought might
be to compute the simple difference, A - mean(A). However, MATLAB throws
an error if you try this code because the matrices are not the same size.
Instead, bsxfun performs the operation without explicitly reconstructing the
input matrices so that they are the same size.

A = [97 89 84; 95 82 92; 64 80 99;76 77 67;...
88 59 74; 78 66 87; 55 93 85];

dev = bsxfun(@minus,A,mean(A))

dev =

18 11 0
16 4 8

-15 2 15
-3 -1 -17
9 -19 -10

-1 -12 3
-24 15 1

Ordering, Setting, and Counting Operations
In many applications, calculations done on an element of a vector depend on
other elements in the same vector. For example, a vector, x, might represent a
set. How to iterate through a set without a for or while loop is not obvious.
The process becomes much clearer and the syntax less cumbersome when
you use vectorized code.

Eliminating Redundant Elements
A number of different ways exist for finding the redundant elements of a
vector. One way involves the function diff. After sorting the vector elements,
equal adjacent elements produce a zero entry when you use the diff function
on that vector. Because diff(x) produces a vector that has one fewer element

23-41

23 Performance

than x, you must add an element that is not equal to any other element in the
set. NaN always satisfies this condition. Finally, you can use logical indexing
to choose the unique elements in the set:

x = [2 1 2 2 3 1 3 2 1 3];
x = sort(x);
difference = diff([x,NaN]);
y = x(difference~=0)

y =

1 2 3

Alternatively, you could accomplish the same operation by using the unique
function:

y=unique(x);

However, the unique function might provide more functionality than is
needed and slow down the execution of your code. Use the tic and toc
functions if you want to measure the performance of each code snippet.

Counting Elements in a Vector
Rather than merely returning the set, or subset, of x, you can count the
occurrences of an element in a vector. After the vector sorts, you can use the
find function to determine the indices of zero values in diff(x) and to show
where the elements change value. The difference between subsequent indices
from the find function indicates the number of occurrences for a particular
element:

x = [2 1 2 2 3 1 3 2 1 3];
x = sort(x);
difference = diff([x,max(x)+1]);
count = diff(find([1,difference]))
y = x(find(difference))

count =

3 4 3

23-42

Vectorization

y =

1 2 3

The find function does not return indices for NaN elements. You can count the
number of NaN and Inf values using the isnan and isinf functions.

count_nans = sum(isnan(x(:)));
count_infs = sum(isinf(x(:)));

Functions Commonly Used in Vectorizing

Function Description

all Test to determine if all elements are nonzero

any Test for any nonzeros

cumsum Find cumulative sum

diff Find differences and approximate derivatives

find find indices and values of nonzero elements

ind2sub Convert from linear index to subscripts

ipermute Inverse permute dimensions of a multidimensional
array

logical Convert numeric values to logical

meshgrid Generate X and Y arrays for 3-D plots

ndgrid Generate arrays for multidimensional functions and
interpolations

permute Rearrange dimensions of a multidimensional array

prod Find product of array elements

repmat Replicate and tile an array

reshape Change the shape of an array

shiftdim Shift array dimensions

sort Sort array elements in ascending or descending order

squeeze Remove singleton dimensions from an array

23-43

23 Performance

Function Description

sub2ind Convert from subscripts to linear index

sum find the sum of array elements

Concepts • “Techniques for Improving Performance” on page 23-29

External
Web Sites

• MathWorks Newsletter: Matrix Indexing in MATLAB

23-44

http://www.mathworks.com/company/newsletters/articles/Matrix-Indexing-in-MATLAB/matrix.html

24

Memory Usage

• “Memory Allocation” on page 24-2

• “Memory Management Functions” on page 24-12

• “Strategies for Efficient Use of Memory” on page 24-15

• “Resolving “Out of Memory” Errors” on page 24-23

24 Memory Usage

Memory Allocation

In this section...

“Memory Allocation for Arrays” on page 24-2

“Data Structures and Memory” on page 24-6

Memory Allocation for Arrays
The topics below provide information on how the MATLAB software allocates
memory when working with arrays and variables. The purpose is to help
you use memory more efficiently when writing code. Most of the time,
however, you should not need to be concerned with these internal operations
as MATLAB handles data storage for you automatically.

• “Creating and Modifying Arrays” on page 24-2

• “Copying Arrays” on page 24-3

• “Array Headers” on page 24-4

• “Function Arguments” on page 24-6

Note Any information on how the MATLAB software handles data internally
is subject to change in future releases.

Creating and Modifying Arrays
When you assign a numeric or character array to a variable, MATLAB
allocates a contiguous virtual block of memory and stores the array data in
that block. MATLAB also stores information about the array data, such as its
class and dimensions, in a separate, small block of memory called a header.

If you add new elements to an existing array, MATLAB expands the existing
array in memory in a way that keeps its storage contiguous. This usually
requires finding a new block of memory large enough to hold the expanded
array. MATLAB then copies the contents of the array from its original
location to this new block in memory, adds the new elements to the array in
this block, and frees up the original array location in memory.

24-2

Memory Allocation

If you remove elements from an existing array, MATLAB keeps the memory
storage contiguous by removing the deleted elements, and then compacting its
storage in the original memory location.

Working with Large Data Sets. If you are working with large data sets,
you need to be careful when increasing the size of an array to avoid getting
errors caused by insufficient memory. If you expand the array beyond the
available contiguous memory of its original location, MATLAB must make a
copy of the array and set this copy to the new value. During this operation,
there are two copies of the original array in memory. This temporarily doubles
the amount of memory required for the array and increases the risk of your
program running out of memory during execution. It is better to preallocate
sufficient memory for the largest potential size of the array at the start. See
“Preallocating Arrays” on page 23-29.

Copying Arrays
Internally, multiple variables can point to the same block of data, thus
sharing that array’s value. When you copy a variable to another variable (e.g.,
B = A), MATLAB makes a copy of the array reference, but not the array itself.
As long as you do not modify the contents of the array, there is no need to
store more than one copy of it. If you do modify any elements of the array,
MATLAB makes a copy of the array and then modifies that copy.

The following example demonstrates this. Start by creating a simple script
memUsed.m to display how much memory is currently being used by your
MATLAB process. Put these two lines of code in the script:

[usr, sys] = memory;
usr.MemUsedMATLAB

Get an initial reading of how much memory is currently being used by your
MATLAB process:

format short eng;
memUsed
ans =

295.4977e+006

Create a 2000-by-2000 numeric array A. This uses about 32MB of memory:

24-3

24 Memory Usage

A = magic(2000);
memUsed
ans =

327.6349e+006

Make a copy of array A in B. As there is no need at this point to have two
copies of the array data, MATLAB only makes a copy of the array reference.
This requires no significant additional memory:

B = A;
memUsed
ans =

327.6349e+006

Now modify B by making it one half its original size (i.e., set 1000 rows to
empty). This requires that MATLAB make a copy of at least the first 1000
rows of the A array, and assign that copy to B:

B(1001:2000,:) = [];
format short; size(B)
ans =

1000 2000

Check the memory used again. Even though B is significantly smaller than
it was originally, the amount of memory used by the MATLAB process has
increased by about 16 MB (1/2 of the 32 MB originally required for A) because
B could no longer remain as just a reference to A:

format short eng; memUsed
ans =

343.6421e+006

Array Headers
When you assign an array to a variable, MATLAB also stores information
about the array (such as class and dimensions) in a separate piece of memory
called a header. For most arrays, the memory required to store the header is
insignificant. There is a small advantage to storing large data sets in a small

24-4

Memory Allocation

number of large arrays as opposed to a large number of small arrays. This is
because the former configuration requires fewer array headers.

Structure and Cell Arrays. For structures and cell arrays, MATLAB creates
a header not only for each array, but also for each field of the structure and
for each cell of a cell array. Because of this, the amount of memory required to
store a structure or cell array depends not only on how much data it holds,
but also on how it is constructed.

For example, take a scalar structure array S1 having fields R, G, and B. Each
field of size 100-by-50 requires one array header to describe the overall
structure, one header for each unique field name, and one header per field
for the 1-by-1 structure array. This makes a total of seven array headers
for the entire data structure:

S1.R(1:100,1:50)
S1.G(1:100,1:50)
S1.B(1:100,1:50)

On the other hand, take a 100-by-50 structure array S2 in which each element
has scalar fields R, G, and B. In this case, you need one array header to
describe the overall structure, one for each unique field name, and one per
field for each of the 5,000 elements of the structure, making a total of 15,004
array headers for the entire data structure:

S2(1:100,1:50).R
S2(1:100,1:50).G
S2(1:100,1:50).B

Even though S1 and S2 contain the same amount of data, S1 uses significantly
less space in memory. Not only is less memory required, but there is a
corresponding speed benefit to using the S1 format, as well.

See “Cell Arrays” and “Structures” under “Data Structures and Memory”
on page 24-6.

Memory Usage Reported By the whos Function. The whos function
displays the amount of memory consumed by any variable. For reasons of
simplicity, whos reports only the memory used to store the actual data. It does
not report storage for the array header, for example.

24-5

24 Memory Usage

Function Arguments
MATLAB handles arguments passed in function calls in a similar way. When
you pass a variable to a function, you are actually passing a reference to the
data that the variable represents. As long as the input data is not modified
by the function being called, the variable in the calling function and the
variable in the called function point to the same location in memory. If the
called function modifies the value of the input data, then MATLAB makes
a copy of the original array in a new location in memory, updates that copy
with the modified value, and points the input variable in the called function
to this new array.

In the example below, function myfun modifies the value of the array passed
into it. MATLAB makes a copy in memory of the array pointed to by A, sets
variable X as a reference to this new array, and then sets one row of X to zero.
The array referenced by A remains unchanged:

A = magic(500);
myfun(A);

function myfun(X)
X(400,:) = 0;

If the calling function needs the modified value of the array it passed to myfun,
you need to return the updated array as an output of the called function,
as shown here for variable A:

A = magic(500);
A = myfun(A);
sprintf('The new value of A is %d', A)

function Y = myfun(X)
X(400,:) = 0;
Y = X;

Data Structures and Memory
Memory requirements differ for the various types of MATLAB data structures.
You may be able to reduce the amount of memory used for these structures by
considering how MATLAB stores them.

24-6

Memory Allocation

Numeric Arrays
MATLAB requires 1, 2, 4, or 8 bytes to store 8-bit, 16-bit, 32-bit, and 64-bit
signed and unsigned integers, respectively. For floating-point numbers,
MATLAB uses 4 or 8 bytes for single and double types. To conserve memory
when working with numeric arrays, MathWorks recommends that you use
the smallest integer or floating-point type that will contain your data without
overflowing. For more information, see “Numeric Types”.

Complex Arrays
MATLAB stores complex data as separate real and imaginary parts. If you
make a copy of a complex array variable, and then modify only the real or
imaginary part of the array, MATLAB creates a new array containing both
real and imaginary parts.

Sparse Matrices
It is best to store matrices with values that are mostly zero in sparse format.
Sparse matrices can use less memory and may also be faster to manipulate
than full matrices. You can convert a full matrix to sparse format using the
sparse function.

Compare two 1000-by-1000 matrices: X, a matrix of doubles with 2/3 of its
elements equal to zero; and Y, a sparse copy of X. The following example shows
that the sparse matrix requires approximately half as much memory:

whos
Name Size Bytes Class

X 1000x1000 8000000 double array
Y 1000x1000 4004000 double array (sparse)

Cell Arrays
In addition to data storage, cell arrays require a certain amount of additional
memory to store information describing each cell. This information is
recorded in a header, and there is one header for each cell of the array. You
can determine the amount of memory required for a cell array header by
finding the number of bytes consumed by a 1-by-1 cell that contains no data,
as shown below for a 32-bit system:

24-7

24 Memory Usage

A = {[]}; % Empty cell array

whos A
Name Size Bytes Class Attributes

A 1x1 60 cell

In this case, MATLAB shows the number of bytes required for each header in
the cell array on a 32-bit system to be 60. This is the header size that is used
in all of the 32-bit examples in this section. For 64-bit systems, the header
size is assumed to be 112 bytes in this documentation. You can find the
correct header size on a 64-bit system using the method just shown for 32 bits.

To predict the size of an entire cell array, multiply the number you have just
derived for the header by the total number of cells in the array, and then
add to that the number of bytes required for the data you intend to store
in the array:

(header_size x number_of_cells) + data

So a 10-by-20 cell array that contains 400 bytes of data would require 22,800
bytes of memory on a 64-bit system:

(112 x 200) + 400 = 22800

Note While numeric arrays must be stored in contiguous memory, structures
and cell arrays do not.

Example 1 – Memory Allocation for a Cell Array. The following 4-by-1
cell array records the brand name, screen size, price, and on-sale status for
three laptop computers:

Laptops = {['SuperrrFast 89X', 'ReliablePlus G5', ...
'UCanA4dIt 140L6']; ...

[single(17), single(15.4), single(14.1)]; ...
[2499.99, 1199.99, 499.99]; ...
[true, true, false]};

On a 32-bit system, the cell array header alone requires 60 bytes per cell:

24-8

Memory Allocation

4 cells * 60 bytes per cell = 240 bytes for the cell array

Calculate the memory required to contain the data in each of the four cells:

45 characters * 2 bytes per char = 90 bytes
3 doubles * 8 bytes per double = 24 bytes
3 singles * 4 bytes per single = 12 bytes
3 logicals * 1 byte per logical = 3 bytes

90 + 24 + 12 + 3 = 129 bytes for the data

Add the two, and then compare your result with the size returned by
MATLAB:

240 + 129 = 369 bytes total

whos Laptops
Name Size Bytes Class Attributes

Laptops 4x1 369 cell

Structures

S.A = [];
B = whos('S');
B.bytes - 60
ans =

64

Compute the memory needed for a structure array as follows:

32-bit systems: fields x ((60 x array elements) + 64) + data
64-bit systems: fields x ((112 x array elements) + 64) + data

On a 64-bit computer system, a 4-by-5 structure Clients with fields Address
and Phone uses 4,608 bytes just for the structure:

2 fields x ((112 x 20) + 64) = 2 x (2240 + 64) = 4608 bytes

To that sum, you must add the memory required to hold the data assigned to
each field. If you assign a 25-character string to Address and a 12-character

24-9

24 Memory Usage

string to Phone in each element of the 4-by-5 Clients array, you use 1480
bytes for data:

(25+12) characters * 2 bytes per char * 20 elements = 1480 bytes

Add the two and you see that the entire structure consumes 6,088 bytes of
memory.

Example 1 – Memory Allocation for a Structure Array. Compute the
amount of memory that would be required to store the following 6-by-5
structure array having the following four fields on a 32-bit system:

A: 5-by-8-by-6 signed 8-bit integer array
B: 1-by-200 single array
C: 30-by-30 unsigned 16-bit integer array
D: 1-by-27 character array

Construct the array:

A = int8(ones(5,8,6));
B = single(1:500);
C = uint16(magic(30));
D = 'Company Name: MathWorks';

s = struct('f1', A, 'f2', B, 'f3', C, 'f4', D);

for m=1:6
for n=1:5

s(m,n)=s(1,1);
end

end

Calculate the amount of memory required for the structure itself, and then for
the data it contains:

structure = fields x ((60 x array elements) + 64) =
4 x ((60 x 30) + 64) = 7,456 bytes

data = (field1 + field2 + field3 + field4) x array elements =
(240 + 2000 + 1800 + 54) x 30 = 122,820 bytes

24-10

Memory Allocation

Add the two, and then compare your result with the size returned by
MATLAB:

Total bytes calculated for structure s: 7,456 + 122,820 = 130,276

whos s
Name Size Bytes Class Attributes

s 6x5 130036 struct

24-11

24 Memory Usage

Memory Management Functions
The following functions can help you to manage memory use while running
the MATLAB software:

• memory displays or returns information about how much memory is
available and how much is used by MATLAB. This includes the following:

- Size of the largest single array MATLAB can create at this time.

- Total size of the virtual address space available for data.

- Total amount of memory used by the MATLAB process for both libraries
and data.

- Available and total Virtual Memory for the MATLAB software process.

- Available system memory, including both physical memory and paging
file.

- Available and the total physical memory (RAM) of the computer.

• whos shows how much memory MATLAB currently has allocated for
variables in the workspace.

• pack saves existing variables to disk, and then reloads them contiguously.
This reduces the chances of running into problems due to memory
fragmentation.

• clear removes variables from memory. One way to increase the amount
of available memory is to periodically clear variables from memory that
you no longer need.

If you use pack and there is still not enough free memory to proceed, you
probably need to remove some of the variables you are no longer using
from memory. Use clear to do this.

• save selectively stores variables to the disk. This is a useful technique
when you are working with large amounts of data. Save data to the disk
periodically, and then use the clear function to remove the saved data
from memory.

• load reloads a data file saved with the save function.

24-12

Memory Management Functions

• quit exits MATLAB and returns all allocated memory to the system. This
can be useful on UNIX systems, which do not free up memory allocated to
an application (e.g., MATLAB) until the application exits.

You can use the save and load functions in conjunction with the quit
command to free memory by:

1 Saving any needed variables with the save function.

2 Quitting MATLAB to free all memory allocated to MATLAB.

3 Starting a new MATLAB session and loading the saved variables back
into the clean MATLAB workspace.

The whos Function
The whos command can give you an idea of the memory used by MATLAB
variables.

A = ones(10,10);
whos

Name Size Bytes Class Attributes
A 10x10 800 double

Note that whos does not include information about

• Memory used by MATLAB (for example, Java code and plots).

• Memory used for most objects (e.g., time series, custom) .

• Memory for variables not in the calling workspace .

• Shared data copies. whos shows bytes used for a shared data copy even
when it does not use any memory. This example shows that whos reports
an array (A) and a shared data copy of that array (B) separately, even
though the data exists only once in memory:

Store 400 MB array as A. Memory used = 381MB (715 MB – 334 MB) :

memory
Memory used by MATLAB: 334 MB (3.502e+008 bytes)

A = rand(5e7,1);

24-13

24 Memory Usage

memory
Memory used by MATLAB: 715 MB (7.502e+008 bytes)

whos
Name Size Bytes Class Attributes

A 50000000x1 400000000 double

Create B and point it to A. Note that although whos shows both A and B,
there is only one copy of the data in memory. No additional memory is
consumed by assigning A to B:

B = A;

memory
Memory used by MATLAB: 715 MB (7.502e+008 bytes)

whos
Name Size Bytes Class Attributes

A 50000000x1 400000000 double
B 50000000x1 400000000 double

Modifying B(1)copies all of A to B and changes the value of B(1). Memory
used = 382MB (1097 MB – 715 MB). Now there are two copies of the data
in memory, yet the output of whos does not change:

B(1) = 3;

memory
Memory used by MATLAB: 1097 MB (1.150e+009 bytes)

whos
Name Size Bytes Class Attributes

A 50000000x1 400000000 double
B 50000000x1 400000000 double

24-14

Strategies for Efficient Use of Memory

Strategies for Efficient Use of Memory

In this section...

“Ways to Reduce the Amount of Memory Required” on page 24-15

“Using Appropriate Data Storage” on page 24-17

“How to Avoid Fragmenting Memory” on page 24-20

“Reclaiming Used Memory” on page 24-21

Ways to Reduce the Amount of Memory Required
The source of many "out of memory" problems often involves analyzing or
processing an existing large set of data such as in a file or a database. This
requires bringing all or part of the data set into the MATLAB software
process. The following techniques deal with minimizing the required memory
during this stage.

Load Only As Much Data As You Need
Only import into MATLAB as much of a large data set as you need for the
problem you are trying to solve. This is not usually a problem when importing
from sources such as a database, where you can explicitly search for elements
matching a query. But this is a common problem with loading large flat
text or binary files. Rather than loading the entire file, use the appropriate
MATLAB function to load parts of files.

MAT-Files. Load part of a variable by indexing into an object that you create
with the matfile function.

Text Files. Use the textscan function to access parts of a large text file by
reading only the selected columns and rows. If you specify the number of rows
or a repeat format number with textscan, MATLAB calculates the exact
amount of memory required beforehand.

Binary Files. You can use low-level binary file I/O functions, such as fread,
to access parts of any file that has a known format. For binary files of an
unknown format, try using memory mapping with the memmapfile function.

24-15

24 Memory Usage

Image, HDF, Audio, and Video Files. Many of the MATLAB functions
that support loading from these types of files allow you to select portions
of the data to read. For details, see the function reference pages listed in
“Supported File Formats”.

Process Data By Blocks
Consider block processing, that is, processing a large data set one section at a
time in a loop. Reducing the size of the largest array in a data set reduces
the size of any copies or temporaries needed. You can use this technique
in either of two ways:

• For a subset of applications that you can break into separate chunks and
process independently.

• For applications that only rely on the state of a previous block, such as
filtering.

Avoid Creating Temporary Arrays
Avoid creating large temporary variables, and also make it a practice to
clear those temporary variables you do use when they are no longer needed.
For example, when you create a large array of zeros, instead of saving to a
temporary variable A, and then converting A to a single:

A = zeros(1e6,1);
As = single(A);

use just the one command to do both operations:

A = zeros(1e6,1,'single');

Using the repmat function, array preallocation and for loops are other ways
to work on nondouble data without requiring temporary storage in memory.

Use Nested Functions to Pass Fewer Arguments
When working with large data sets, be aware that MATLAB makes a
temporary copy of an input variable if the called function modifies its value.
This temporarily doubles the memory required to store the array, which
causes MATLAB to generate an error if sufficient memory is not available.

24-16

Strategies for Efficient Use of Memory

One way to use less memory in this situation is to use nested functions. A
nested function shares the workspace of all outer functions, giving the nested
function access to data outside of its usual scope. In the example shown here,
nested function setrowval has direct access to the workspace of the outer
function myfun, making it unnecessary to pass a copy of the variable in the
function call. When setrowval modifies the value of A, it modifies it in the
workspace of the calling function. There is no need to use additional memory
to hold a separate array for the function being called, and there also is no
need to return the modified value of A:

function myfun
A = magic(500);

function setrowval(row, value)
A(row,:) = value;
end

setrowval(400, 0);
disp('The new value of A(399:401,1:10) is')
A(399:401,1:10)
end

Using Appropriate Data Storage
MATLAB provides you with different sizes of data classes, such as double and
uint8, so you do not need to use large classes to store your smaller segments
of data. For example, it takes 7 KB less memory to store 1,000 small unsigned
integer values using the uint8 class than it does with double.

Use the Appropriate Numeric Class
The numeric class you should use in MATLAB depends on your intended
actions. The default class double gives the best precision, but requires 8 bytes
per element of memory to store. If you intend to perform complicated math
such as linear algebra, you must use a floating-point class such as a double or
single. The single class requires only 4 bytes. There are some limitations
on what you can do with singles, but most MATLAB Math operations are
supported.

If you just need to carry out simple arithmetic and you represent the original
data as integers, you can use the integer classes in MATLAB. The following is

24-17

24 Memory Usage

a list of numeric classes, memory requirements (in bytes), and the supported
operations.

Class (Data Type) Bytes Supported Operations

single 4 Most math

double 8 All math

logical 1 Logical/conditional operations

int8, uint8 1 Arithmetic and some simple functions

int16, uint16 2 Arithmetic and some simple functions

int32, uint32 4 Arithmetic and some simple functions

int64, int64 8 Arithmetic and some simple functions

Reduce the Amount of Overhead When Storing Data
MATLAB arrays (implemented internally as mxArrays) require room to store
meta information about the data in memory, such as type, dimensions, and
attributes. This takes about 80 bytes per array. This overhead only becomes
an issue when you have a large number (e.g., hundreds or thousands) of
small mxArrays (e.g., scalars). The whos command lists the memory used by
variables, but does not include this overhead.

Because simple numeric arrays (comprising one mxArray) have the least
overhead, you should use them wherever possible. When data is too complex
to store in a simple array (or matrix), you can use other data structures.

Cell arrays are comprised of separate mxArrays for each element. As a result,
cell arrays with many small elements have a large overhead.

Structures require a similar amount of overhead per field (see the
documentation on “Array Headers” on page 24-4 above). Structures with
many fields and small contents have a large overhead and should be avoided.
A large array of structures with numeric scalar fields requires much more
memory than a structure with fields containing large numeric arrays.

Also note that while MATLAB stores numeric arrays in contiguous memory,
this is not the case for structures and cell arrays.

24-18

Strategies for Efficient Use of Memory

Import Data to the Appropriate MATLAB Class
When reading data from a binary file with fread, it is a common error to
specify only the class of the data in the file, and not the class of the data
MATLAB uses once it is in the workspace. As a result, the default double is
used even if you are reading only 8-bit values. For example,

fid = fopen('large_file_of_uint8s.bin', 'r');
a = fread(fid, 1e3, 'uint8'); % Requires 8k
whos a

Name Size Bytes Class Attributes

a 1000x1 8000 double

a = fread(fid, 1e3, 'uint8=>uint8'); % Requires 1k
whos a

Name Size Bytes Class Attributes

a 1000x1 1000 uint8

Make Arrays Sparse When Possible
If your data contains many zeros, consider using sparse arrays, which store
only nonzero elements. The example below compares the space required for
storage of an array of mainly zeros:

A = diag(1e3,1e3); % Full matrix with ones on the diagonal
As = sparse(A) % Sparse matrix with only nonzero elements
whos

Name Size Bytes Class

A 1001x1001 8016008 double array
As 1001x1001 4020 double array (sparse)

You can see that this array requires only approximately 4 KB to be stored as
sparse, but approximately 8 MB as a full matrix. In general, for a sparse
double array with nnz nonzero elements and ncol columns, the memory
required is

• 16 * nnz + 8 * ncol + 8 bytes (on a 64 bit machine)

• 12 * nnz + 4 * ncol + 4 bytes (on a 32 bit machine)

24-19

24 Memory Usage

Note that MATLAB does not support all mathematical operations on sparse
arrays.

How to Avoid Fragmenting Memory
MATLAB always uses a contiguous segment of memory to store a numeric
array. As you manipulate this data, however, the contiguous block can become
fragmented. When memory is fragmented, there may be plenty of free space,
but not enough contiguous memory to store a new large variable. Increasing
fragmentation can use significantly more memory than is necessary.

Preallocate Contiguous Memory When Creating Arrays
In the course of a MATLAB session, memory can become fragmented due
to dynamic memory allocation and deallocation. for and while loops that
incrementally increase, or grow, the size of a data structure each time through
the loop can add to this fragmentation as they have to repeatedly find and
allocate larger blocks of memory to store the data.

To make more efficient use of your memory, preallocate a block of memory
large enough to hold the matrix at its final size before entering the loop. When
you preallocate memory for an array, MATLAB reserves sufficient contiguous
space for the entire full-size array at the beginning of the computation. Once
you have this space, you can add elements to the array without having to
continually allocate new space for it in memory.

For more information on preallocation, see “Preallocating Arrays” on page
23-29.

Allocate Your Larger Arrays First
MATLAB uses a heap method of memory management. It requests memory
from the operating system when there is not enough memory available in the
heap to store the current variables. It reuses memory as long as the size of
the memory segment required is available in the heap.

The following statements can require approximately 4.3 MB of RAM. This is
because MATLAB may not be able to reuse the space previously occupied by
two 1 MB arrays when allocating space for a 2.3 MB array:

a = rand(1e6,1);

24-20

Strategies for Efficient Use of Memory

b = rand(1e6,1);
clear
c = rand(2.3e6,1);

The simplest way to prevent overallocation of memory is to allocate the largest
vectors first. These statements require only about 2.0 MB of RAM:

c = rand(2.3e6,1);
clear
a = rand(1e6,1);
b = rand(1e6,1);

Long-Term Usage (Windows Systems Only)
On 32-bit Microsoft Windows, the workspace of MATLAB can fragment over
time due to the fact that the Windows memory manager does not return
blocks of certain types and sizes to the operating system. Clearing the
MATLAB workspace does not fix this problem. You can minimize the problem
by allocating the largest variables first. This cannot address, however, the
eventual fragmentation of the workspace that occurs from continual use of
MATLAB over many days and weeks, for example. The only solution to this is
to save your work and restart MATLAB.

The pack command, which saves all variables to disk and loads them back,
does not help with this situation.

Reclaiming Used Memory
One simple way to increase the amount of memory you have available is to
clear large arrays that you no longer use.

Save Your Large Data Periodically to Disk
If your program generates very large amounts of data, consider writing the
data to disk periodically. After saving that portion of the data, use the clear
function to remove the variable from memory and continue with the data
generation.

24-21

24 Memory Usage

Clear Old Variables from Memory When No Longer Needed
When you are working with a very large data set repeatedly or interactively,
clear the old variable first to make space for the new variable. Otherwise,
MATLAB requires temporary storage of equal size before overriding the
variable. For example,

a = rand(100e6,1) % 800 MB array
b = rand(100e6,1) % New 800 MB array
Error using rand
Out of memory. Type HELP MEMORY for your options.

clear a
a = rand(100e6,1) % New 800 MB array

24-22

Resolving “Out of Memory” Errors

Resolving “Out of Memory” Errors

In this section...

“General Suggestions for Reclaiming Memory” on page 24-23

“Setting the Process Limit” on page 24-23

“Disabling Java VM on Startup” on page 24-25

“Increasing System Swap Space” on page 24-25

“Using the 3GB Switch on Windows Systems” on page 24-26

“Freeing Up System Resources on Windows Systems” on page 24-27

General Suggestions for Reclaiming Memory
The MATLAB software generates an Out of Memory message whenever it
requests a segment of memory from the operating system that is larger than
what is currently available. When you see the Out of Memory message,
use any of the techniques discussed under “Strategies for Efficient Use of
Memory” on page 24-15 to help optimize the available memory. If the Out of
Memory message still appears, you can try any of the following:

• Compress data to reduce memory fragmentation.

• If possible, break large matrices into several smaller matrices so that less
memory is used at any one time.

• If possible, reduce the size of your data.

• Make sure that there are no external constraints on the memory accessible
to MATLAB. (On UNIX systems, use the limit command to check).

• Increase the size of the swap file. We recommend that you configure your
system with twice as much swap space as you have RAM. See “Increasing
System Swap Space” on page 24-25, below.

• Add more memory to the system.

Setting the Process Limit
The platforms and operating systems that MATLAB supports have different
memory characteristics and limitations. In particular, the process limit is the

24-23

24 Memory Usage

maximum amount of virtual memory a single process (or application) can
address. On 32-bit systems, this is the most important factor limiting data set
size. The process limit must be large enough for MATLAB to store all of the
data it is to process, any MATLAB program files, the MATLAB executable
itself, and additional state information.

Where possible, choose an operating system that maximizes this number, that
is, a 64-bit operating system. The following is a list of MATLAB supported
operating systems and their process limits.

Operating System Process Limit

32-bit Microsoft Windows XP, Windows Vista™,
Windows 7

2 GB

32-bit Windows XP with 3 GB boot.ini switch
or 32-bit Windows Vista or Windows 7 with
increaseuserva set (see later)

3 GB

32-bit Linux (Linux is a registered trademark of
Linus Torvalds)

~3 GB

64-bit Windows or Linux running 32-bit MATLAB ≤ 4 GB

64-bit Windows, Apple Macintosh OS X, or Linux
running 64-bit MATLAB

8 TB

To verify the current process limit of MATLAB on Windows systems, use
the memory function.

Maximum possible array: 583 MB (6.111e+008 bytes) *
Memory available for all arrays: 1515 MB (1.588e+009 bytes) **
Memory used by MATLAB: 386 MB (4.050e+008 bytes)
Physical Memory (RAM): 2014 MB (2.112e+009 bytes)

* Limited by contiguous virtual address space available.
** Limited by virtual address space available.

When called with one output variable, the memory function returns or displays
the following values. See the function reference for memory to find out how
to use it with more than one output.

24-24

Resolving “Out of Memory” Errors

memory Return Value Description

MaxPossibleArrayBytes Size of the largest single array MATLAB can
currently create

MemAvailableAllArrays Total size of the virtual address space available
for data

MemUsedMATLAB Total amount of memory used by the MATLAB
process

View the value against the Total entry in the Virtual Memory section. It is
shown as 2 GB in the table, which is the default on Windows XP systems. On
UNIX systems, see the ulimit command to view and set user limits including
virtual memory.

Disabling Java VM on Startup
On UNIX systems, you can increase the workspace size by approximately
400 MB if you start MATLAB without the Java JVM™. To do this, use the
command line option -nojvm to start MATLAB. This also increases the size
of the largest contiguous block (and therefore the largest matrix) by about
the same.

Using -nojvm comes with a penalty in that you will lose many features that
rely on the Java software, including the entire development environment.

Starting MATLAB with the -nodesktop option does not save any substantial
amount of memory.

Shutting down other applications and services (e.g., using msconfig on
Windows systems) can help if total system memory is the limiting factor, but
usually process limit (on 32-bit machines) is the main limiting factor.

Increasing System Swap Space
The total memory available to applications on your computer is comprised of
physical memory (RAM), plus a page file, or swap file, on disk. The swap file
can be very large (e.g., 16 TB on 32-bit Windows, 512 TB on 64-bit Windows).
The operating system allocates the virtual memory of each process to physical

24-25

24 Memory Usage

memory or to the swap file, depending on the needs of the system and other
processes.

Most systems allow you to control the size of your swap file. The steps
involved depend on the system you are running on.

Note There is no interface for directly controlling the swap space on
Macintosh OS X systems.

Windows Systems
Use the Windows Control Panel to change the size of the virtual memory
paging file on your system. For more information, refer to the Windows help.

Linux Systems
You can change your swap space by using the mkswap and swapon commands.
For more information on the above commands, type man followed by the
command name at the Linux prompt.

Using the 3GB Switch on Windows Systems
Microsoft Windows XP systems can allocate 3 GB (instead of the default 2
GB) to processes, if you set an appropriate switch in the boot.ini file of the
system. MathWorks recommends that you only do this with Windows XP SP2
systems or later. This gives an extra 1 GB of virtual memory to MATLAB, not
contiguous with the rest of the memory. This enables you to store more data,
but not larger arrays, as these are limited by contiguous space. This is mostly
beneficial if you have enough RAM (e.g., 3 or 4 GB) to use it.

After setting the switch, confirm the new value of the virtual memory after
restarting your computer and using the memory function.

[userview systemview] = memory;

systemview.VirtualAddressSpace
ans =

Available: 1.6727e+009 % Virtual memory available to MATLAB.
Total: 2.1474e+009 % Total virtual memory

24-26

Resolving “Out of Memory” Errors

For more documentation on this option, use the following URL:

http://support.microsoft.com/kb/291988

Similarly, on machines running Microsoft Windows Vista and Windows 7, you
can achieve the same effect by using the command:

BCDEdit /set increaseuserva 3072

For more information on this option, go to the following website:

http://msdn.microsoft.com

Freeing Up System Resources on Windows Systems
There are no functions implemented to manipulate the way MATLAB handles
Microsoft Windows system resources. Windows systems use these resources
to track fonts, windows, and screen objects. Resources can be depleted by
using multiple figure windows, multiple fonts, or several UI controls. One
way to free up system resources is to close all inactive windows. Windows
system icons still use resources.

24-27

http://support.microsoft.com/kb/291988
http://msdn.microsoft.com

24 Memory Usage

24-28

25

Custom Help and
Documentation

• “Create Help for Classes” on page 25-2

• “Check Which Programs Have Help” on page 25-10

• “Create Help Summary Files (Contents.m)” on page 25-13

• “Display Custom Documentation” on page 25-16

• “Display Custom Examples” on page 25-25

25 Custom Help and Documentation

Create Help for Classes

In this section...

“Help Text from the doc Command” on page 25-2

“Custom Help Text” on page 25-3

Help Text from the doc Command
When you use the doc command to display help for a class, MATLAB
automatically displays information that it derives from the class definition.

For example, create a class definition file named someClass.m with several
properties and methods, as shown.

classdef someClass
%someClass Summary of this class goes here
% Detailed explanation goes here

properties
One % First public property
Two % Second public property

end
properties (Access=private)

Three % Do not show this property
end

methods
function obj = someClass

% Summary of constructor
end
function myMethod(obj)

% Summary of myMethod
disp(obj)

end
end
methods (Static)

function myStaticMethod
% Summary of myStaticMethod

25-2

Create Help for Classes

end
end

end

View the help text and the details from the class definition using the doc
command.

doc someClass

Custom Help Text
You can add information about your classes that both the doc command and
the help command include in their displays. The doc command displays the
help text at the top of the generated HTML pages, above the information
derived from the class definition. The help command displays the help text in
the Command Window. For details, see:

25-3

25 Custom Help and Documentation

• “Classes” on page 25-4

• “Methods” on page 25-5

• “Properties” on page 25-6

• “Enumerations” on page 25-7

• “Events” on page 25-8

Classes
Create help text for classes by including comments on lines immediately
after the classdef statement in a file. For example, create a file named
myClass.m, as shown.

classdef myClass
% myClass Summary of myClass
% This is the first line of the description of myClass.
% Descriptions can include multiple lines of text.
%
% myClass Properties:
% a - Description of a
% b - Description of b
%
% myClass Methods:
% doThis - Description of doThis
% doThat - Description of doThat

properties
a
b

end

methods
function obj = myClass
end
function doThis(obj)
end
function doThat(obj)
end

end

25-4

Create Help for Classes

end

Lists and descriptions of the properties and methods in the initial comment
block are optional. If you include comment lines that contain the name of
your class followed by Properties or Methods and a colon (:), then MATLAB
creates hyperlinks to the help for the properties or methods.

View the help text for the class in the Command Window using the help
command.

help myClass

myClass Summary of myClass
This is the first line of the description of myClass.
Descriptions can include multiple lines of text.

myClass Properties:
a - Description of a
b - Description of b

myClass Methods:
doThis - Description of doThis
doThat - Description of doThat

Methods
Create help for a method by inserting comments immediately after the
function definition statement. For example, modify the class definition file
myClass.m to include help for the doThis method.

function doThis(obj)
% doThis Do this thing
% Here is some help text for the doThis method.
%
% See also DOTHAT.

disp(obj)
end

25-5

25 Custom Help and Documentation

View the help text for the method in the Command Window using the help
command. Specify both the class name and method name, separated by a dot.

help myClass.doThis

doThis Do this thing
Here is some help text for the doThis method.

See also doThat.

Properties
There are two ways to create help for properties:

• Insert comment lines above the property definition. Use this approach for
multiline help text.

• Add a single-line comment next to the property definition.

Comments above the definition have precedence over a comment next to the
definition.

For example, modify the property definitions in the class definition file
myClass.m.

properties
a % First property of myClass

% b - Second property of myClass
% The description for b has several
% lines of text.
b % Other comment

end

View the help for properties in the Command Window using the help
command. Specify both the class name and property name, separated by a dot.

help myClass.a

a - First property of myClass

help myClass.b

25-6

Create Help for Classes

b - Second property of myClass
The description for b has several
lines of text.

Enumerations
Like properties, there are two ways to create help for enumerations:

• Insert comment lines above the enumeration definition. Use this approach
for multiline help text.

• Add a single-line comment next to the enumeration definition.

Comments above the definition have precedence over a comment next to the
definition.

For example, create an enumeration class in a file named myEnumeration.m.

classdef myEnumeration
enumeration

uno, % First enumeration

% DOS - Second enumeration
% The description for DOS has several
% lines of text.
dos % A comment (not help text)

end
end

View the help in the Command Window using the help command. Specify
both the class name and enumeration member, separated by a dot.

help myEnumeration.uno

uno - First enumeration

help myEnumeration.dos

dos - Second enumeration
The description for dos has several
lines of text.

25-7

25 Custom Help and Documentation

Events
Like properties and enumerations, there are two ways to create help for
events:

• Insert comment lines above the event definition. Use this approach for
multiline help text.

• Add a single-line comment next to the event definition.

Comments above the definition have precedence over a comment next to the
definition.

For example, create an class in a file named hasEvents.m.

classdef hasEvents < handle
events

Alpha % First event

% Beta - Second event
% Additional text about second event.
Beta % (not help text)

end

methods
function fireEventAlpha(h)

notify(h,'Alpha');
end

function fireEventBeta(h)
notify(h,'Beta');

end
end

end

View the help in the Command Window using the help command. Specify
both the class name and event, separated by a dot.

help hasEvents.Alpha

Alpha - First event

25-8

Create Help for Classes

help hasEvents.Beta

Beta - Second event
Additional text about second event.

See Also help | doc

Concepts • “Classes in the MATLAB Language”
• “User-Defined Classes”

25-9

25 Custom Help and Documentation

Check Which Programs Have Help
To determine which of your programs files have help text, you can use the
Help Report.

In the Help Report, you specify a set of help components for which you want to
search, such as examples or See Also lines. For each file searched, MATLAB
displays the help text for the components it finds. Otherwise, MATLAB
displays a highlighted message to indicate that the component is missing.

To generate a Help Report, in the Current Folder browser, navigate to the
folder you want to check, click , and then select Reports > Help Report.
The Help Report displays in the MATLAB Web browser.

25-10

Check Which Programs Have Help

Note You cannot run reports when the path is a UNC (Universal Naming
Convention) path; that is, a path that starts with \\. Instead, use an actual
hard drive on your system, or a mapped network drive.

This table describes the available options for Help Reports.

Help Report
Option

Description

Show class
methods

Include methods in the report. If you do not select this
option, then the report includes results for classes, but
not for methods within a class definition file.

Show all help Display all help text found in each file. If you also select
individual help components, such as Description, then
help text appears twice in the report for each file: once
for the overall help text, and once for the component.

If your program has the same name as other programs
on the MATLAB search path, then the help command
generates a list of those overloaded items and
automatically adds links to the help for those items.

Description Check for an initial, nonempty comment line in the file.
This line is sometimes called the H1 line.

Examples Check for examples in the help text. The Help Report
performs a case-insensitive search for a help line with
a single-word variant of example. The report displays
that line and subsequent nonblank comment lines,
along with the initial line number.

25-11

25 Custom Help and Documentation

Help Report
Option

Description

See Also Check for a line in the help that begins with the string
See also. The report displays the text and the initial
line number.

If the programs listed after See also are on the search
path, then the help command generates hyperlinks to
the help for those programs. The Help Report indicates
when a program in the See also line is not on the path.

Copyright Check for a comment line in the file that begins with
the string Copyright. When there is a copyright line,
the report also checks whether the end year is current.
The date check requires that the copyright line includes
either a single year (such as 2012) or a range of years
with no spaces (such as 2001-2012).

The recommended practice is to include a range of years
from the year you created the file to the current year.

Related
Examples

• “Add Help for Your Program” on page 15-5
• “Create Help Summary Files (Contents.m)” on page 25-13

25-12

Create Help Summary Files (Contents.m)

Create Help Summary Files (Contents.m)

In this section...

“What Is a Contents.m File?” on page 25-13

“Create a Contents.m File” on page 25-14

“Check an Existing Contents.m File” on page 25-14

What Is a Contents.m File?
A Contents.m file provides a summary of the programs in a particular
folder. The help, doc, and ver functions refer to Contents.m files to display
information about folders.

Contents.m files contain only comment lines. The first two lines are headers
that describe the folder. Subsequent lines list the program files in the folder,
along with their descriptions. Optionally, you can group files and include
category descriptions. For example, view the functions available in the
codetools folder:

help codetools

Commands for creating and debugging code
MATLAB Version 8.0 (R2012b) 02-Oct-2012

Editing and publishing
edit - Edit or create a file
grabcode - Copy MATLAB code from published HTML
mlint - Check files for possible problems
notebook - Open MATLAB Notebook in Microsoft Word
publish - Publish file containing cells to output file
snapnow - Force snapshot of image for published document

Directory tools
mlintrpt - Run mlint for file or folder, reporting results in browser
visdiff - Compare two files (text, MAT, or binary) or folders

...

25-13

25 Custom Help and Documentation

If you do not want others to see a summary of your program files, place
an empty Contents.m file in the folder. An empty Contents.m file causes
help foldername to report No help found for foldername. Without a
Contents.m file, the help and doc commands display a generated list of all
program files in the folder.

Create a Contents.m File
When you have a set of existing program files in a folder, the easiest way to
create a Contents.m file is to use the Contents Report. The primary purpose of
the Contents Report is to check that an existing Contents.m file is up-to-date.
However, it also checks whether Contents.m exists, and can generate a new
file based on the contents of the folder. Follow these steps to create a file:

1 In the Current Folder browser, navigate to the folder that contains your
program files.

2 Click , and then select Reports > Contents Report.

3 In the report, where prompted to make a Contents.m file, click yes. The
new file includes the names of all program files in the folder, using the
description line (the first nonempty comment line) whenever it is available.

4 Open the generated file in the Editor, and modify the file so that the second
comment line is in this form:

% Version xxx dd-mmm-yyyy

Do not include any spaces in the date. This comment line enables the ver
function to detect the version information.

Check an Existing Contents.m File
Verify whether your Contents.m file reflects the current contents of the folder
using the Contents Report, as follows:

1 In the Current Folder browser, navigate to the folder that contains the
Contents.m file.

2 Click , and then select Reports > Contents Report.

25-14

Create Help Summary Files (Contents.m)

Note You cannot run reports when the path is a UNC (Universal Naming
Convention) path; that is, a path that starts with \\. Instead, use an actual
hard drive on your system, or a mapped network drive.

The Contents Report performs the following checks.

Check Whether the Contents.m
File...

Details

Exists If there is no Contents.m file in the
folder, you can create one from the
report.

Includes all programs in the folder Missing programs appear in gray
highlights. You do not need to add
programs that you do not want to
expose to end users.

Incorrectly lists nonexistent files Listed programs that are not in the
folder appear in pink highlights.

Matches the program file
descriptions

The report compares file descriptions
in Contents.m with the first
nonempty comment line in the
corresponding file. Discrepancies
appear in pink highlights. You can
update either the program file or the
Contents.m file.

Uses consistent spacing between file
names and descriptions

Fix the alignment by clicking fix
spacing at the top of the report.

You can make all the suggested changes by clicking fix all, or open the file in
the Editor by clicking edit Contents.m.

See Also doc | help | ver

25-15

25 Custom Help and Documentation

Display Custom Documentation

In this section...

“Overview” on page 25-16

“Identify Your Documentation (info.xml)” on page 25-17

“Create a Table of Contents (helptoc.xml)” on page 25-20

“Build a Search Database” on page 25-22

“Address Validation Errors for info.xml Files” on page 25-23

Overview
If you create a toolbox that works with MathWorks products—even if it only
contains a few functions—you can include with it HTML documentation
files. Providing HTML files for your toolbox allows you to include figures,
diagrams, screen captures, equations, and formatting to make your toolbox
help more usable.

To display custom documentation:

1 Create HTML help files. Store these files in a common folder, such as an
html subfolder relative to your primary program files. This folder must be
on the MATLAB search path, but outside the matlabroot folder.

Documentation sets often contain:

• A roadmap page (that is, an initial landing page for the documentation)

• Examples and topics that explain how to use the toolbox

• Function or block reference pages

You can create HTML files in any text editor or Web publishing software.
MATLAB includes functionality to convert .m files to formatted HTML
files. For more information, see “Publishing MATLAB Code” on page 18-6.

2 Create an info.xml file, which enables MATLAB to find and identify your
documentation files.

25-16

Display Custom Documentation

3 Create a helptoc.xml file, which creates a Table of Contents for your
documentation to display in the Contents pane of the Supplemental
Software browser. Store this file in the folder that contains your HTML
files.

4 Optionally, create a search database for your HTML help files using the
builddocsearchdb function.

5 View your documentation.

a In the Help browser, navigate to the home page.

b At the bottom of the home page, click Supplemental Software.

The Supplemental Software browser opens in a new window.

Identify Your Documentation (info.xml)
The info.xml file specifies the name and icon to display for your
documentation set. It also identifies where to find your HTML help files
and the helptoc.xml file. You must create a file named info.xml for each
toolbox you document.

25-17

25 Custom Help and Documentation

The following listing is a template for info.xml that you can adapt to describe
your toolbox:

<productinfo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="optional">

<?xml-stylesheet type="text/xsl"href="optional"?>

<matlabrelease>2012b</matlabrelease>

<name>MyToolbox</name>

<type>toolbox</type>

<icon></icon>

<help_location>html</help_location>

<help_contents_icon>$toolbox/matlab/icons/bookicon.gif</help_contents_icon>

</productinfo>

The following table describes required elements of the info.xml file.

XML Tag Description Value in Template Notes

<matlabrelease> Release of
MATLAB

R2012b Not displayed in the browser,
but indicates when you added
help files.

<name> Title of
toolbox

MyToolbox The name of your toolbox
that appears in the browser
Contents pane.

<type> Label for the
toolbox

toolbox Allowable values: matlab,
toolbox, simulink, blockset,
links_targets, other.

<icon> Icon for the
Start button
(obsolete)

No longer used, but the <icon>
element is required to parse
the info.xml file.

25-18

Display Custom Documentation

XML Tag Description Value in Template Notes

<help_location> Location of
help files

html Name of subfolder containing
helptoc.xml and HTML
help files you provide
for your toolbox. If not a
subfolder, specify the path
to help_location relative
to the info.xml file. If you
provide HTML help files
for multiple toolboxes, each
help_location must be a
different folder.

<help_contents_icon> Icon to
display in
Contents
pane

$toolbox/matlab/
icons/bookicon.gif

When you define the info.xml file, make sure that:

• You include all required elements.

• The entries are in the same order as in the preceding list.

• File and folder names in the XML exactly match the names of your files
and folders and use upper and lower case letters identically.

• The info.xml file is in a folder on the MATLAB search path.

Note MATLAB parses the info.xml file and displays your documentation
when you add the folder that contains info.xml to the path. If you created
an info.xml file in a folder already on the path, remove the folder from the
path and then add it again, so that MATLAB parses the file. Make sure
that the folder you are adding is not your current folder.

You can include comments in your info.xml file, such as copyright and
contact information. Create comments by enclosing the text on a line with
between <!-- and --> markup.

25-19

25 Custom Help and Documentation

Create a Table of Contents (helptoc.xml)
The helptoc.xml file defines a hierarchy of entries within the Contents
pane of the Supplemental Software browser. Each <tocitem> entry in the
helptoc.xml file references one of your HTML help files.

Place the helptoc.xml file in the folder that contains your HTML
documentation files. This folder is designated as <help_location> in your
info.xml file.

For example, suppose you have created the following HTML files:

• A roadmap or starting page for your toolbox, mytoolbox.html.

• A page that lists your functions, funclist.html.

• Three function reference pages: firstfx.html, secondfx.html, and
thirdfx.html.

• An example, myexample.html.

Include file names and descriptions in a helptoc.xml file as follows:

<?xml version='1.0' encoding="utf-8"?>

<toc version="2.0">

<tocitem target="mytoolbox.html">My Toolbox

<tocitem target="funclist.html" image="HelpIcon.FUNCTION">Functions

<tocitem target="firstfx.html">first</tocitem>

<tocitem target="secondfx.html">second</tocitem>

<tocitem target="thirdfx.html">third</tocitem>

</tocitem>

<tocitem target="myexample.html"

image="HelpIcon.EXAMPLES">My Example

</tocitem>

</tocitem>

</toc>

Within the top-level <toc> element, the nested <tocitem> elements define
the structure of your table of contents. Each <tocitem> element has a target
attribute that provides the file name. <tocitem> elements also can include

25-20

Display Custom Documentation

an image attribute to specify icons. Be sure that file and path names exactly
match those of the files and folders, including upper- and lower-case letters.

The elements in the previous helptoc.xml and info.xml files correspond to
the following display in the browser.

If your HTML pages include anchor elements, you can refer to an anchor in
the target attribute of a <tocitem> element. In HTML files, anchors are of
the form Any content. In the helptoc.xml file,
you can create a link to that anchor using a pound sign (#), such as

<tocitem target="mypage.html#anchorid">Descripive text</tocitem>

Icons for Table of Contents Entries
You can display icons for your Contents pane entries within your toolbox. To
use standard MathWorks icons, include any of the following icons as image
attributes for <tocitem> elements.

Icon Use For Image Tag String

Getting
Started
Guides

HelpIcon.GETTING_STARTED

User Guides HelpIcon.USER_GUIDE

Functions HelpIcon.FUNCTION

Blocks HelpIcon.BLOCK

25-21

25 Custom Help and Documentation

Icon Use For Image Tag String

Examples HelpIcon.EXAMPLES

Release
Notes

HelpIcon.RELEASE_NOTES

Include the icons as image attributes in top-level TOC entries. If you provide
a roadmap page, also include icons for second-level TOC entries under the
roadmap.

Template for helptoc.xml
A complete template for helptoc.xml files that includes <tocitem> elements
for all standard content types, such as Getting Started, User Guide, and
Release Notes, is located in an examples folder included with the MATLAB
documentation. To copy the template file, helptoc_template.xml, to your
current folder and edit the copy, click here or run the following code:

copyfile(fullfile(matlabroot,'help','techdoc','matlab_env', ...

'examples','templates','helptoc_template.xml'),pwd), ...

fileattrib('helptoc_template.xml','+w')

edit('helptoc_template.xml')

Build a Search Database
To support searches of your documentation, create a search database using
the builddocsearchdb function. When using this function, specify the
complete path to the folder that contains your HTML files.

For example, suppose your HTML files are in C:\MATLAB\MyToolbox\html.
This command creates a searchable database:

builddocsearchdb('C:\MATLAB\MyToolbox\html')

builddocsearchdb creates a subfolder of C:\MATLAB\MyToolbox\html named
helpsearch, which contains three files:

• A file called deletable.

• A file called segments.

25-22

Display Custom Documentation

• A file having a cfs extension with a name that varies.

You can search for terms in your toolbox from the search bar of the
Supplemental Software browser.

Address Validation Errors for info.xml Files

• “About XML File Validation” on page 25-23

• “Entities Missing or Out of Order in info.xml” on page 25-24

• “Unrelated info.xml File” on page 25-24

• “Invalid Constructs in info.xml File” on page 25-24

• “Outdated info.xml File for a MathWorks Product” on page 25-24

About XML File Validation
When MATLAB finds an info.xml file on the search path or in the current
folder, it automatically validates the file against the supported schema. If
there is an invalid construct in the info.xml file, MATLAB displays an error
in the Command Window. The error is typically of the form:

Warning: File <yourxmlfile.xml> did not validate.
...

An info.xml validation error can occur when you start MATLAB or add
folders to the search path.

The following sections describe the primary causes of an XML file validation
error and information to address them.

25-23

25 Custom Help and Documentation

Entities Missing or Out of Order in info.xml
If you do not list required XML elements in the prescribed order, you receive
an XML validation error:

Often, errors result from incorrect ordering of XML tags. Correct the error by updating

the info.xml file contents to follow the guidelines in the MATLAB help documentation.

For a description of the elements you need in an info.xml file and their
required ordering, see “Identify Your Documentation (info.xml)” on page
25-17.

Unrelated info.xml File
Suppose you have a file named info.xml that has nothing to do with custom
documentation. Because this info.xml file is an unrelated file, if the file
causes an error, the validation error is irrelevant. In this case, the error is
not actually causing any problems, so you can safely ignore it. To prevent
the error message from reoccurring, rename the offending info.xml file, or
ensure that the file is not on the search path or in the current folder.

Invalid Constructs in info.xml File
If the purpose of the info.xml file is to display custom documentation,
correct the reported problem. Use the message in the error to isolate the
problem or use any validator. One validator you can use is from the W3C®

at http://www.w3.org/2001/03/webdata/xsv. For more information
about the structure of the info.xml file, consult its schema, located at
matlabroot/sys/namespace/info/v1/info.xsd.

Outdated info.xml File for a MathWorks Product
If you have an info.xml file from a different version of MATLAB, that file
could contain constructs that are not valid with your version. To identify an
info.xml file from another version, look at the full path names reported in
the error message. The path usually includes a version number, for example,
...\MATLAB\R14\.... In this situation, the error is not actually causing any
problems, so you can safely ignore the error message. To ensure that the error
does not reoccur, remove the offending info.xml file, or ensure that the file
is not on the search path or in the current folder.

25-24

http://www.w3.org/2001/03/webdata/xsv

Display Custom Examples

Display Custom Examples

In this section...

“How to Display Examples” on page 25-25

“Elements of the demos.xml File” on page 25-28

“Thumbnail Images” on page 25-29

How to Display Examples
If you have videos, published program scripts, or other files that illustrate
the use of your programs, you can display these examples in a MATLAB
browser, as follows.

1 Create your example files. Store the files in a folder that is on the MATLAB
search path, but outside the matlabroot folder.

Tip MATLAB includes a publishing feature that converts scripts or
functions to formatted HTML files, which you can display as examples. For
information about creating these HTML files, see “Publishing MATLAB
Code” on page 18-6.

2 Create a demos.xml file that describes the name, type, and display
information for your examples.

For example, suppose you have a toolbox named My Sample, which contains
a script named my_example that you published to HTML. This demos.xml
file allows you to display my_example and a MATLAB video:

<?xml version="1.0" encoding="utf-8"?>

<demos>

<name>My Sample</name>

<type>toolbox</type>

<icon>HelpIcon.DEMOS</icon>

<description>This text appears on the main page for your examples.</description>

<website>Link to your Web site</website>

25-25

25 Custom Help and Documentation

<demosection>

<label>First Section</label>

<demoitem>

<label>My Example Title</label>

<type>M-file</type>

<source>my_example</source>

</demoitem>

</demosection>

<demosection>

<label>Second Section</label>

<demoitem>

<label>My Video (5 min, 21 sec)</label>

<type>video</type>

<callback>

playbackdemo('WorkingInTheDevelopmentEnvironment','toolbox/matlab/web/demos');

</callback>

</demoitem>

</demosection>

</demos>

Note <demosection> elements are optional.

3 View your examples.

a In the Help browser, navigate to the home page.

b At the bottom of the home page, click Supplemental Software.

25-26

Display Custom Examples

The Supplemental Software browser opens in a new window. The
Contents pane contains an Examples node, which contains the entries
corresponding to your demos.xml file.

25-27

25 Custom Help and Documentation

Tip If your examples do not appear, refresh the browser. In the
Contents pane, right-click Examples, and then select Refresh
Examples.

Alternatively, force a refresh by removing the folder that contains
demos.xml from the path, and then adding it back. When you add the
folder back to the path, make sure it is not the current folder.

Elements of the demos.xml File

• “General Information in <demos>” on page 25-28

• “Categories Using <demosection> (Optional)” on page 25-29

• “Information About Each Example in <demoitem>” on page 25-29

General Information in <demos>
Within the demos.xml file, the root tag is <demos>. This tag includes elements
that determine the contents of the main page for your examples.

XML Tag Notes

<name> Name of your toolbox or collection of examples.

<type> Possible values are matlab, simulink, toolbox, or
blockset.

<icon> Icon for your example. You can use a standard
icon, HelpIcon.DEMOS, or provide a custom icon by
specifying a path to the icon relative to the location
of the demos.xml file.

<description> The description that appears on the main page for
your examples.

<website> (Optional) Link to a Web site. For example,
MathWorks examples include a link to the product
page at http://www.mathworks.com.

25-28

Display Custom Examples

Categories Using <demosection> (Optional)
Define categories for your examples by including a <demosection> for
each category. If you include any categories, then all examples must be
in categories.

Each <demosection> element contains a <label> that provides the category
name, and the associated <demoitem> elements.

Information About Each Example in <demoitem>

XML Tag Notes

<label> Defines the title to display in the browser.

<type> Possible values are M-file, model, M-GUI, video,
or other.

<source> If <type> is M-file, model, M-GUI, then <source> is
the name of the associated .m file or model file, with
no extension. Otherwise, do not include a <source>
element, but include a <callback> element.

<file> Use this element only for examples with a <type>
value other than M-file when you want to display
an HTML file that describes the example. Specify a
relative path from the location of demos.xml.

<callback> Use this element only for examples with a <type>
value of video or other to specify an executable file
or a MATLAB command to run the example.

<dependency> (Optional) Specifies other products required to run
the example, such as another toolbox. The text must
match a product name specified in an info.xml file
that is on the search path or in the current folder.

Thumbnail Images
If your example has an HTML file to describe it, you can include a thumbnail,
a small image typifying the example. The demos.xml file does not specify
thumbnail images directly.

25-29

25 Custom Help and Documentation

To include a thumbnail, supply a .png image file in the same folder as the
HTML file. Keep the image size to within 96-by-64 pixels (width-by-height).
Give the .png file the same name as the HTML file. Thus, if the <file>
element for your example is ./html/my_example.html, then your thumbnail
must be named my_example.png and reside in the same folder.

When you publish a script to HTML within MATLAB, you get a .png
thumbnail file in the correct place with the correct name by default.

25-30

26

Source Control Interface

The source control interface provides access to your source control system
from the MATLAB desktop. Source control systems, also known as version
control, revision control, configuration management, and file management
systems, are platform dependent—the topics for the Microsoft Windows
platforms appear first, followed by the topics for the UNIX platforms.

• “Source Control Interface on Microsoft Windows” on page 26-2

• “Set Up Source Control (Microsoft Windows)” on page 26-3

• “Check Files In and Out (Microsoft Windows)” on page 26-11

• “Additional Source Control Actions (Microsoft Windows)” on page 26-14

• “Access Source Control from Editors (Microsoft Windows)” on page 26-23

• “Troubleshoot Source Control Problems (Microsoft Windows)” on page 26-24

• “Source Control Interface on UNIX Platforms” on page 26-26

• “Specify Source Control System (UNIX Platforms)” on page 26-27

• “Check In Files (UNIX Platforms)” on page 26-30

• “Check Out Files (UNIX Platforms)” on page 26-32

• “Undo the Checkout (UNIX Platforms)” on page 26-35

26 Source Control Interface

Source Control Interface on Microsoft Windows
If you use source control systems to manage your files, you can interface
with the systems to perform source control actions from within the MATLAB,
Simulink, and Stateflow® products. Use menu items in the MATLAB,
Simulink, or Stateflow products, or run functions in the MATLAB Command
Window to interface with your source control systems.

The source control interface on Windows works with any source control
system that conforms to the Microsoft Common Source Control standard,
Version 1.1. If your source control system does not conform to the standard,
use a Microsoft Source Code Control API wrapper product for your source
control system so that you can interface with it from the MATLAB, Simulink,
and Stateflow products.

This documentation uses the Microsoft Visual SourceSafe® software as an
example. Your source control system might use different terminology and not
support the same options or might use them in a different way. Regardless,
you should be able to perform similar actions with your source control system
based on this documentation.

Perform most source control interface actions from the Current Folder
browser. You can also perform many of these actions for a single file from the
MATLAB Editor, a Simulink model window, or a Stateflow chart window—for
more information, see “Access Source Control from Editors (Microsoft
Windows)” on page 26-23. Another way to access many of the source control
actions is with the verctrl function.

26-2

Set Up Source Control (Microsoft® Windows®)

Set Up Source Control (Microsoft Windows)

In this section...

“Create Projects in Source Control System” on page 26-3

“Specify Source Control System with MATLAB Software” on page 26-5

“Register Source Control Project with MATLAB Software” on page 26-7

“Add Files to Source Control” on page 26-9

Create Projects in Source Control System
In your source control system, create the projects that your folders and files
will be associated with.

All files in a folder must belong to the same source control project. Be sure
the working folder for the project in the source control system specifies the
correct path to the folder on disk.

Example of Creating Source Control Project
This example uses the project my_thesis_files in Microsoft Visual
SourceSafe. This illustration of the Current Folder browser shows the path to
the folder on disk, D:\my_thesis_files.

26-3

26 Source Control Interface

The following illustration shows the example project in the source control
system.

26-4

Set Up Source Control (Microsoft® Windows®)

To set the working folder in Microsoft Visual SourceSafe for this example,
select my_thesis_files, right-click, select Set Working Folder from the
context menu, and specify D:\my_thesis_files in the resulting dialog box.

Specify Source Control System with MATLAB Software
In MATLAB, specify the source control system you want to
access. On the Home tab, in the Environment section, click
Preferences > General > Source Control.

The currently selected system is shown in the Preferences dialog box. The
list includes all installed source control systems that support the Microsoft
Common Source Control standard.

Select the source control system you want to interface with and click OK.

26-5

26 Source Control Interface

MATLAB remembers preferences between sessions, so you only need to
perform this action again when you want to access a different source control
system.

Source Control with 64-Bit Versions of MATLAB
If you run a 64-bit version of MATLAB and want MATLAB to interface
with your source control system, your source control system must be 64-bit
compliant. If you have a 32-bit source control system, or if you have a 64-bit
source control system running in 32-bit compatibility mode, MATLAB cannot
use it. In that event, MATLAB displays a warning about the problem in the
Source Control preference pane.

Function Alternative for Specifying Source Control System
A function alternative to select a source control system is not available, but
you can list all available source control systems using verctrl with the
all_systems argument. Use cmopts to display the name of the currently
selected source control system.

26-6

Set Up Source Control (Microsoft® Windows®)

Register Source Control Project with MATLAB
Software
Register a source control system project with a folder in MATLAB, that is,
associate a source control system project with a folder and all files in that
folder. Do this only one time for any file in the folder, which registers all
files in that folder:

1 In the MATLAB Current Folder browser, select a file that is in the folder
you want to associate with a project in your source control system. For
example, select D:\my_thesis_files\wind.m. This will associate all files in
the my_thesis_files folder.

2 Right-click, and from the context menu, select Source Control > Register
Name_of_Source_Control_System Project with MATLAB. The
Name_of_Source_Control_System is the source control system you
selected using preferences as described in “Specify Source Control System
with MATLAB Software” on page 26-5.

26-7

26 Source Control Interface

The following example shows Microsoft Visual SourceSafe.

3 In the resulting Name_of_Source_Control_System Login dialog box,
provide the user name and password you use to access your source control
system, and click OK.

26-8

Set Up Source Control (Microsoft® Windows®)

4 In the resulting Choose project from Name_of_Source_Control_System
dialog box, select the source control system project to associate with the folder
and click OK. This example shows my_thesis_files.

The selected file, its folder, and all files in the folder, are associated with
the source control system project you selected. For the example, MATLAB
associates all files in D:\my_thesis_files with the source control project
my_thesis_files.

Add Files to Source Control
Add files to the source control system. Do this only once for each file:

1 In the Current Folder browser, select files you want to add to the source
control system.

26-9

26 Source Control Interface

2 Right-click, and from the context menu, select Source Control > Add to
Source Control.

3 The resulting Add to source control dialog box lists files you selected to
add. You can add text in the Comments field. If you expect to use the files
soon, select the Keep checked out check box (which is selected by default).
Click OK.

If you try to add an unsaved file, the file is automatically saved upon adding.

Function Alternative
The function alternative is verctrl with the add argument.

26-10

Check Files In and Out (Microsoft® Windows®)

Check Files In and Out (Microsoft Windows)

In this section...

“Check Files Into Source Control” on page 26-11

“Check Files Out of Source Control” on page 26-11

“Undoing the Checkout” on page 26-12

Before checking files into and out of your source control system from the
MATLAB desktop, be sure to set up your system for use with MATLAB as
described in “Set Up Source Control (Microsoft Windows)” on page 26-3.

Check Files Into Source Control
After creating or modifying files using MATLAB software or related products,
check the files into the source control system by performing these steps:

1 In the Current Folder browser, select the files to check in. A file can be open
or closed when you check it in, but it must be saved, that is, it cannot contain
unsaved changes.

2 Right-click, and from the context menu, select Source Control > Check In.

3 In the resulting Check in file(s) dialog box, you can add text in the
Comments field. If you want to continue working on the files, select the
check box Keep checked out. Click OK.

If a file contains unsaved changes when you try to check it in, you will be
prompted to save the changes to complete the checkin. If you did not keep the
file checked out and you keep the file open, note that it is a read-only version.

Function Alternative
The function alternative is verctrl with the checkin argument.

Check Files Out of Source Control
From MATLAB, to check out the files you want to modify, perform these steps:

1 In the Current Folder browser, select the files to check out.

26-11

26 Source Control Interface

2 Right-click, and from the context menu, select Source Control > Check Out.

3 The resulting Check out file(s) dialog box lists files you selected to check
out. Enter comment text in the Comments field, which appears if your source
control system supports comments on checkout. Click OK.

After checking out a file, make changes to it in MATLAB or another product,
and save the file. For example, edit a file in the Editor.

If you try to change a file without first having checked it out, the file is
read-only, as seen in the title bar, and you will not be able to save any
changes. This protects you from accidentally overwriting the source control
version of the file.

If you end the MATLAB session, the file remains checked out. You can check
in the file from within MATLAB during a later session, or folder from your
source control system.

Function Alternative
The function alternative is verctrl with the checkout argument.

Undoing the Checkout
You can undo the checkout for files. The files remain checked in, and do not
have any of the changes you made since you last checked them out. To save

26-12

Check Files In and Out (Microsoft® Windows®)

any changes you have made since checking out a particular file click Save
on the Editor tab, select Save As, and supply a different file name before
you undo the checkout.

To undo a checkout, follow these steps:

1 In the MATLAB Current Folder browser, select the files for which you want
to undo the checkout.

2 Right-click, and from the context menu, select Source Control > Undo
Checkout.

The MATLAB Undo checkout dialog box opens, listing the files you selected.

3 Click OK.

Function Alternative
The function alternative is verctrl with the undocheckout argument.

26-13

26 Source Control Interface

Additional Source Control Actions (Microsoft Windows)

In this section...

“Getting the Latest Version of Files for Viewing or Compiling” on page 26-14

“Removing Files from the Source Control System” on page 26-15

“Showing File History” on page 26-16

“Comparing the Working Copy of a File to the Latest Version in Source
Control” on page 26-18

“Viewing Source Control Properties of a File” on page 26-20

“Starting the Source Control System” on page 26-21

Getting the Latest Version of Files for Viewing or
Compiling
You can get the latest version of a file from the source control system for
viewing or running. Getting a file differs from checking it out. When you
get a file, it is write protected so you cannot edit it, but when you check out
a file, you can edit it.

To get the latest version, follow these steps:

1 In the MATLAB Current Folder browser, select the folders or files that you
want to get. If you select files, you cannot select folders too.

26-14

Additional Source Control Actions (Microsoft® Windows®)

2 Right-click, and from the context menu, select Source Control > Get Latest
Version.

The MATLAB Get latest version dialog box opens, listing the files or folders
you selected.

3 Click OK.

You can now open the file to view it, run the file, or check out the file for
editing.

Function Alternative
The function alternative is verctrl with the get argument.

Removing Files from the Source Control System
To remove files from the source control system, follow these steps:

1 In the MATLAB Current Folder browser, select the files you want to remove.

2 Right-click, and from the context menu, select Source Control > Remove
from Source Control.

The MATLAB Remove from source control dialog box opens, listing the
files you selected.

26-15

26 Source Control Interface

3 Click OK.

Function Alternative
The function alternative is verctrl with the remove argument.

Showing File History
To show the history of a file in the source control system, follow these steps:

1 In the MATLAB Current Folder browser, select the file for which you want to
view the history.

2 Right-click, and from the context menu, select Source Control > History.

26-16

Additional Source Control Actions (Microsoft® Windows®)

A dialog box, which is specific to your source control system, opens. For
Microsoft Visual SourceSafe, the History Options dialog box opens, as
shown in the following example illustration.

3 Complete the dialog box to specify the range of history you want for the
selected file and click OK. For example, enter my_name for User.

26-17

26 Source Control Interface

The history presented depends on your source control system. For Microsoft
Visual SourceSafe, the History dialog box opens for that file, showing the
file’s history in the source control system.

Function Alternative
The function alternative is verctrl with the history argument.

Comparing the Working Copy of a File to the Latest
Version in Source Control
You can compare the current working copy of a file with the latest checked-in
version of the file in the source control system. This highlights the differences
between the two files, showing the changes you made since you checked out
the file.

To view the differences, follow these steps:

1 In the MATLAB Current Folder browser, select the file for which you want to
view differences. This is a file that has been checked out and edited.

26-18

Additional Source Control Actions (Microsoft® Windows®)

2 Right-click, and from the context menu, select Source
Control > Differences.

A dialog box, which is specific to your source control system, opens. For
Microsoft Visual SourceSafe, the Difference Options dialog box opens.

3 Review the default entries in the dialog box, make any needed changes, and
click OK. The following example is for Microsoft Visual SourceSafe.

The method of presenting differences depends on your source control system.
For Microsoft Visual SourceSafe, the Differences for dialog box opens. This
highlights the differences between the working copy of the file and the latest
checked-in version of the file.

26-19

26 Source Control Interface

Function Alternative
The function alternative is verctrl with the showdiff or isdiff argument.

Viewing Source Control Properties of a File
To view the source control properties of a file, follow these steps:

1 In the MATLAB Current Folder browser, select the file for which you want to
view properties.

2 Right-click, and from the context menu, select Source Control > Properties.

26-20

Additional Source Control Actions (Microsoft® Windows®)

A dialog box, which is specific to your source control system, opens. The
following example shows the Microsoft Visual SourceSafe properties dialog
box.

Function Alternative
The function alternative is verctrl with the properties argument.

Starting the Source Control System
All the MATLAB source control actions automatically start the source control
system to perform the action, if the source control system is not already
open. If you want to start the source control system from MATLAB without
performing a specific action source control action,

1 Right-click any folder or file in the MATLAB Current Folder browser

26-21

26 Source Control Interface

2 From the context menu, select Source Control > Start Source Control
System.

The interface to your source control system opens, showing the source control
project associated with the current folder in MATLAB. The following example
shows the Microsoft Visual SourceSafe Explorer interface.

Function Alternative
The function alternative is verctrl with the runscc argument.

26-22

Access Source Control from Editors (Microsoft® Windows®)

Access Source Control from Editors (Microsoft Windows)
You can create or open a file in the Editor, the Simulink or Stateflow products
and perform most source control actions from their File > Source Control
menus, rather than from the Current Folder browser. Following are some
differences in the source control interface process when you use the Editor,
Simulink, or Stateflow:

• You can perform actions on only one file at time.

• Some of the dialog boxes have a different icon in the title bar. For example,
the Check out file(s) dialog box uses the MATLAB Editor icon instead
of the MATLAB icon.

• You cannot add a new (Untitled) file, but must instead first save the file.

• You cannot register projects from the Simulink or Stateflow products.
Instead, register a project using the Current Folder browser, as described
in “Register Source Control Project with MATLAB Software” on page 26-7.

26-23

26 Source Control Interface

Troubleshoot Source Control Problems (Microsoft
Windows)

In this section...

“Source Control Error: Provider Not Present or Not Installed Properly” on
page 26-24

“Restriction Against @ Character” on page 26-25

“Add to Source Control Is the Only Action Available” on page 26-25

“More Solutions for Source Control Problems” on page 26-25

Source Control Error: Provider Not Present or Not
Installed Properly
In some cases, MATLAB software recognizes your source control system but
you cannot use source control features for MATLAB. Specifically, when you
select General > Source Control in the Preferences dialog box, or run
cmopts, MATLAB lists your source control system, but you cannot perform
any source control actions. Only the Start Source Control System item is
available, and when you select it, MATLAB displays this error:

Source control provider is not present or not installed properly.

Often, this error occurs because a registry key that MATLAB requires from
the source control application is not present. Make sure this registry key is
present:

HKEY_LOCAL_MACHINE\SOFTWARE\SourceCodeControlProvider\
InstalledSCCProviders

The registry key refers to another registry key that is similar to

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\SourceSafe\SccServerPath

This registry key has a path to a DLL-file in the file system. Make sure the
DLL-file exists in that location. If you are not familiar with registry keys, ask
your system administrator for help.

26-24

Troubleshoot Source Control Problems (Microsoft® Windows®)

If this does not solve the problem and you use Microsoft Visual SourceSafe, try
running a client setup for your source control application. When SourceSafe is
installed on a server for a group to use, each machine client can run a setup
but is not required to do so. However, some applications that interface with
SourceSafe, including MATLAB, require you to run the client setup. Run the
client setup, which should resolve the problem.

If the problem persists, access source control outside of MATLAB.

Restriction Against @ Character
Some source control systems, such as Perforce® and Synergy™, reserve the @
character. Perforce, for example, uses it as a revision specifier. Therefore,
you might experience problems if you use these source control systems with
MATLAB files and folders that include the @ character in the folder or file
name.

You might be able to work around this restriction by quoting nonstandard
characters in file names, such as with an escape sequence, which some source
control systems allow. Consult your source control system documentation or
technical support resources for a workaround.

Add to Source Control Is the Only Action Available
To use source control features for a file in the Simulink or Stateflow products,
the file’s source control project must first be registered with MATLAB.
When a file’s source control project is not registered with MATLAB, all
General > Source Control menu items on the Preferences dialog box are
disabled except Add to Source Control. You can select Add to Source,
which registers the project with MATLAB, or you can register the project
using the Current Folder browser, as described in “Register Source Control
Project with MATLAB Software” on page 26-7. You can then perform source
control actions for all files in that project (folder).

More Solutions for Source Control Problems
The latest solutions for problems interfacing MATLAB with a source
control system appear on the MathWorks Web page for support at
http://www.mathworks.com/support/. Search Solutions and Technical
Notes for “source control.”

26-25

http://www.mathworks.com/support/

26 Source Control Interface

Source Control Interface on UNIX Platforms
If you use a source control system to manage your files, you can check
MATLAB program files and Simulink models, and Stateflow charts into and
out of the source control system from within the MATLAB, Simulink, and
Stateflow products.

The source control interface supports four popular source control systems,
as well as a custom option:

• ClearCase® software from IBM® Rational®

• Concurrent Version System (CVS)

• ChangeMan® and PVCS® software from Serena®

• Revision Control System (RCS)

• Custom option — Allows you to build your own interface if you use a
different source control system. For details, see the reference page for
customverctrl.

Perform source control interface actions for a single file using menu items
in the MATLAB Editor, a Simulink model window, or a Stateflow chart
window. To perform source control actions on multiple files, use the Current
Folder browser. Alternatively, run source control functions in the Command
Window, which provide some options not supported with the menu items.

26-26

Specify Source Control System (UNIX® Platforms)

Specify Source Control System (UNIX Platforms)

In this section...

“MATLAB Desktop Alternative” on page 26-27

“Function Alternative” on page 26-28

“Setting a View and Checking Out a Folder with ClearCase Software on
UNIX Platforms” on page 26-28

MATLAB Desktop Alternative
To specify the source control system you want to access, click Preferences
on the Home tab, and select General > Source Control.

The currently selected system is shown in the Preferences dialog box. The
default selection is None.

Select the source control system with which you want to interface and click
OK.

26-27

26 Source Control Interface

MATLAB remembers preferences between sessions, so you only need to
perform this action when you want to access a different source control system.

Function Alternative
A function alternative to select a source control system is not available, but
you can list the currently selected source control system by running cmopts.

Setting a View and Checking Out a Folder with
ClearCase Software on UNIX Platforms
If you use ClearCase software on a UNIX platform, perform the following
from ClearCase:

1 Set a view.

2 Check out the folder that contains files you want to save, check in, or check
out.

26-28

Specify Source Control System (UNIX® Platforms)

You can now use the MATLAB, Simulink, or Stateflow source control
interfaces to ClearCase software.

26-29

26 Source Control Interface

Check In Files (UNIX Platforms)

In this section...

“Checking In One or More Files Using the Current Folder Browser” on
page 26-30

“Checking In One File Using the Editor, or the Simulink or Stateflow
Products” on page 26-30

“Function Alternative” on page 26-31

Checking In One or More Files Using the Current
Folder Browser

1 From the Current Folder browser, select the file or files to check in. A file
can be open or closed when you check it in, but it must be saved, that is,
it cannot contain unsaved changes.

2 Right-click, and from the context menu, select Source Control > Check In.

3 In the resulting Check in file(s) dialog box, you can add text in the
Comments field. If you want to continue working on the files, select the
check box Keep checked out. Click OK.

The files are checked into the source control system. If any file contains
unsaved changes when you try to check it in, you will be prompted to and
must then save the changes to complete the checkin.

An error appears in the Command Window if a file is already checked in.

If you did not keep a file checked out and you keep that file open, note that it
is a read-only version.

Checking In One File Using the Editor, or the Simulink
or Stateflow Products

1 From the Editor, or the Simulink or Stateflow products, with the file open and
saved, select File > Source Control > Check In.

26-30

Check In Files (UNIX® Platforms)

2 In the resulting Check in file(s) dialog box, you can add text in the
Comments field. If you want to continue working on the files, select the
check box Keep checked out. Click OK.

Function Alternative
Use checkin to check files into the source control system. The files can be
open or closed when you use checkin. The checkin function takes this form:

checkin({'file1','file2', ...},'comments','comment_text',...
'option','value')

For filen, use the complete path and include the file extension. You must
supply the comments argument and a comments string with checkin.

Use the option argument to

• Check in a file and keep it checked out — set the lock option value to on.

• Check in a file even though it has not changed since the previous check in
— set the force option value to on.

The comments argument and the lock and force options apply to all files
checked in.

Example Using checkin Function
To check in the file clock.m with the comment Adjustment for leap year,
type

checkin('\myserver\myfiles\clock.m','comments', ...
'Adjustment for leap year')

For other examples, see the reference page for checkin.

26-31

26 Source Control Interface

Check Out Files (UNIX Platforms)

In this section...

“Checking Out One or More Files Using the Current Folder Browser” on
page 26-32

“Checking Out a Single File Using the Editor, or the Simulink or Stateflow
Products” on page 26-33

“Function Alternative” on page 26-33

Checking Out One or More Files Using the Current
Folder Browser

1 In the Current Folder browser, select the file or files to check out.

2 Right-click, and from the context menu, select Source Control > Check
Out. The Check out file(s) dialog box opens.

3 Complete the dialog box:

a To check out the versions that were most recently checked in, select
the Latest version option.

b To check out a specific version of the files, select the Version number
option and type the version number in the field.

26-32

Check Out Files (UNIX® Platforms)

c To prevent others from checking out the files while you have them
checked out, select Lock latest version. To check out read-only
versions of the file, clear Lock latest version.

4 Click OK.

An error appears in the Command Window if a file is already checked out.

After checking out files, make changes to them using MATLAB software or
another software product, and save the files. For example, edit a file in the
Editor.

If you try to change a file without first having checked it out, the file is
read-only, as seen in the title bar, and you will not be able to save any
changes. This protects you from accidentally overwriting the source control
version of the file.

If you end the MATLAB session, the file or files remain checked out. You can
check in files from within MATLAB during a later session, or directly from
your source control system.

Checking Out a Single File Using the Editor, or the
Simulink or Stateflow Products

1 Open the MATLAB program file, Simulink model, or Stateflow chart you
want to check out. The title bar indicates the file is read-only.

2 Select File > Source Control > Check Out. The Check out file(s) dialog
box opens.

3 Complete the dialog box as described in step of “Checking Out One or More
Files Using the Current Folder Browser” on page 26-32, and click OK.

Function Alternative
Use checkout to check out a file from the source control system. You can
check out multiple files at once and specify checkout options. The checkout
function takes this form:

checkout({'file1','file2', ...},'option','value')

26-33

26 Source Control Interface

For filen, use the complete path and include the file extension.

Use the option argument to

• Check out a read-only version of the file — set the lock option value to off.

• Check out the file even if you already have it checked out — set the force
option value to on.

• Check out a specific version of the file — use the revision option, and
assign the version number to the value argument.

The options apply to all files being checked out. The files can be open or closed
when you use checkout.

Example Using checkout Function—Check Out a Specific
Version of a File
To check out the 1.1 version of the file clock.m, type

checkout('\myserver\myfiles\clock.m','revision','1.1')

For other examples, see the reference page for checkout.

26-34

Undo the Checkout (UNIX® Platforms)

Undo the Checkout (UNIX Platforms)

In this section...

“Impact of Undoing a File Checkout” on page 26-35

“Undoing the Checkout for One or More Files Using the Current Folder
Browser” on page 26-35

“Function Alternative” on page 26-35

Impact of Undoing a File Checkout
When you undo the checkout for a file, the file remains checked in, and does
not have any of the changes you made since you checked it out. To save any
changes you have made since checking out a file, click Save on the Editor
tab, select Save As, and supply a different file name before you undo the
checkout. Undo the checkout using the Current Folder browser.

Undoing the Checkout for One or More Files Using
the Current Folder Browser

1 In the MATLAB Current Folder browser, select the file or files for which you
want to undo the checkout.

2 Right-click, and from the context menu, select Source Control > Undo
Checkout. MATLAB undoes the checkout.

An error appears in the Command Window if the file is not checked out.

Function Alternative
The undocheckout function takes this form:

undocheckout({'file1','file2', ...})

Use the complete path for filen and include the file extension. For example,
to undo the checkout for the files clock.m and calendar.m, type

undocheckout({'\myserver\myfiles\clock.m',...
'\myserver\myfiles\calendar.m'})

26-35

26 Source Control Interface

26-36

27

Unit Testing

• “matlab.unittest Package” on page 27-2

• “Write Simple Test Case” on page 27-3

• “Select Qualification Type” on page 27-7

• “Write Test Methods Using Verifications” on page 27-12

• “Write TestClassSetup Method Using Assumptions” on page 27-15

• “Test for Preconditions Using Assertions” on page 27-18

• “Write Helper Function Using Fatal Assertions” on page 27-23

• “Write Setup and Teardown Code” on page 27-25

• “Qualifications Interface” on page 27-29

• “Ways to Run Tests” on page 27-30

• “Customize Test Runner with Plugins” on page 27-31

• “Plugins Interface” on page 27-33

• “Create Simple Test Suites” on page 27-34

• “Analyze Test Case Results” on page 27-36

• “Analyze Failed Test Results” on page 27-38

• “Diagnostics Interface” on page 27-41

• “Filtered Tests” on page 27-42

• “Constraints Interface” on page 27-43

27 Unit Testing

matlab.unittest Package
The matlab.unittest package consists of the following classes and packages:

• matlab.unittest.TestCase. — Superclass of all test classes.

• matlab.unittest.TestSuite. — Class for grouping tests to run.

• matlab.unittest.Test. — Specification of a single Test method.

• matlab.unittest.TestRunner. — Extensible class used to run tests.

• matlab.unittest.TestResult. — Class containing results of a running
a test suite.

• matlab.unittest.plugins — Package of classes that customize a
matlab.unittest TestRunner.

• matlab.unittest.qualifications — Package of classes that specify desired
action upon qualification failure.

• matlab.unittest.constraints — Package of classes that specify rules used
to qualify calculated values.

• matlab.unittest.diagnostics — Package of classes to provide information in
the event of a failure.

27-2

Write Simple Test Case

Write Simple Test Case
This example shows how to write a unit test for a MATLAB function,
quadraticSolver.m.

Create quadraticSolver.m Function

The following MATLAB function solves quadratic equations. Create this
function in a folder on your MATLAB path.

function roots = quadraticSolver(a, b, c)
% quadraticSolver returns solutions to the
% quadratic equation a*x^2 + b*x + c = 0.

if ~isa(a,'numeric') || ~isa(b,'numeric') || ~isa(c,'numeric')
error('quadraticSolver:InputMustBeNumeric', ...

'Coefficients must be numeric.');
end

roots(1) = (-b + sqrt(b^2 - 4*a*c)) / (2*a);
roots(2) = (-b - sqrt(b^2 - 4*a*c)) / (2*a);

end

Create SolverTest Class Definition

To use the matlab.unittest framework, write MATLAB functions (tests) in the
form of a test case, a class derived from matlab.unittest.TestCase.

Create a subclass, SolverTest.

classdef SolverTest < matlab.unittest.TestCase

methods (Test)

end

end

27-3

27 Unit Testing

The following steps show how to create specific tests. Put these tests inside
the methods block with the (Test) attribute.

Create Test Method for Real Solutions

Create a test method, testRealSolution, to verify that quadraticSolver
returns the right value for real solutions. For example, the equation
x2 - 3x + 2 = 0 has real solutions x = 1 and x = 2. This method
calls quadraticSolver with the inputs of this equation. The solution,
expSolution, is [2,1].

Use the matlab.unittest.TestCase method, verifyEqual to compare the
output of the function, actSolution, to the desired output, expSolution. If
the qualification fails, the test continues execution.

function testRealSolution(testCase)
actSolution = quadraticSolver(1,-3,2);
expSolution = [2,1];
testCase.verifyEqual(actSolution,expSolution);

end

Add this function inside the methods (Test) block.

Create Test Method for Imaginary Solutions

Create a test to verify that quadraticSolver returns the right value for
imaginary solutions. For example, the equation x2 - 2x + 10 = 0 has
imaginary solutions x = -1 + 3i and x = -1 - 3i. Add this function,
testImaginarySolution, inside the methods (Test) block.

function testImaginarySolution(testCase)
actSolution = quadraticSolver(1,2,10);
expSolution = [-1+3i, -1-3i];
testCase.verifyEqual(actSolution,expSolution);

end

The order of the tests within the block does not matter.

Save Class Definition

27-4

Write Simple Test Case

The following is the complete SolverTest class definition. Save this file in a
folder on your MATLAB path.

classdef SolverTest < matlab.unittest.TestCase
% SolverTest tests solutions to the quadratic equation
% a*x^2 + b*x + c = 0

methods (Test)
function testRealSolution(testCase)

actSolution = quadraticSolver(1,-3,2);
expSolution = [2,1];
testCase.verifyEqual(actSolution,expSolution);

end
function testImaginarySolution(testCase)

actSolution = quadraticSolver(1,2,10);
expSolution = [-1+3i, -1-3i];
testCase.verifyEqual(actSolution,expSolution);

end
end

end

Run Tests in SolverTest Test Case

Run all the tests in the SolverTest class definition file.

testCase = SolverTest;
res = run(testCase)

Running SolverTest
..
Done SolverTest

res =
1x2 TestResult array with properties:

Name
Passed
Failed
Incomplete

27-5

27 Unit Testing

Duration
Totals:

2 Passed, 0 Failed, 0 Incomplete.
0.029079 seconds testing time.

Run Single Test Method

To run the single test, testRealSolution:

testCase = SolverTest;
res = run(testCase,'testRealSolution')

Running SolverTest
.
Done SolverTest

res =
TestResult with properties:

Name: 'SolverTest/testRealSolution'
Passed: 1
Failed: 0

Incomplete: 0
Duration: 0.0098

Totals:
1 Passed, 0 Failed, 0 Incomplete.
0.0097953 seconds testing time.

For more information, see:

• “Analyze Test Case Results” on page 27-36

• “Create Simple Test Suites” on page 27-34

27-6

Select Qualification Type

Select Qualification Type

In this section...

“Qualification Types” on page 27-7

“Verifiable Qualifications” on page 27-8

“Assumable Qualifications” on page 27-9

“Assertable Qualifications” on page 27-9

“FatalAssertable Qualifications” on page 27-10

“Exception Safe” on page 27-10

Qualification Types
Qualifications are methods for testing values and responding to failures.
There are four types of qualifications:

• Verifications — Produce and record failures without throwing an exception,
meaning the remaining tests run to completion. For more information, see:

- “Write Test Methods Using Verifications” on page 27-12 (example)

- “Verifiable Qualifications” on page 27-8

• Assumptions — Assure that a test runs only when certain preconditions
are satisfied and when such an event should not produce a test failure.
When an assumption failure occurs, the test is marked as filtered. For
more information, see:

- “Write TestClassSetup Method Using Assumptions” on page 27-15
(example)

- “Assumable Qualifications” on page 27-9

- “Filtered Tests” on page 27-42

• Assertions — Assure that the preconditions of the current test are not
violated. For more information, see:

- “Test for Preconditions Using Assertions” on page 27-18 (example)

- “Assertable Qualifications” on page 27-9

27-7

27 Unit Testing

• Fatal assertions — Use this qualification when the failure at the assertion
point renders the remainder of the current test method invalid and the
state is unrecoverable. For more information, see:

- “Write Helper Function Using Fatal Assertions” on page 27-23 (example)

- “FatalAssertable Qualifications” on page 27-10

Verifiable Qualifications
matlab.unittest produces verifications using the Verifiable class. Apart from
actions performed in the event of failures, the Verifiable class has equivalent
functionality to all matlab.unittest qualifications.

When a verification fails, the Verifiable class notifies the testing framework
of the failure, including diagnostic information associated with the failure,
but continues the execution of the currently running test with no stack
unwinding. Use this qualification when a failure at the verification point is
not catastrophic to the remaining test content. Often, verifications are used
for the primary method of verifying an xUnit Four-Phase Test. Use the other
qualification types—assertions, fatal assertions, and assumptions—when
preconditions are violated or fixtures cannot be correctly setup. Such
conditions render the remaining test content invalid.

The primary benefit of verifications is that failures are produced and recorded
without throwing an exception. This means that, even when failures occur,
all test content runs to completion. This facilitates a greater understanding
of how close a given piece of software is to fulfilling the requirements of a
given test suite. Qualification types that throw exceptions do not provide
this insight, since, once an exception is thrown, there remains an arbitrary
amount of code that was not reached nor exercised.

However, when verifications are overused they can produce extraneous noise
for a single failure condition. If a failure condition will cause subsequent
qualification points to also fail, then consider using assertions or fatal
assertions instead.

27-8

Select Qualification Type

Assumable Qualifications
matlab.unittest produces assumptions using the Assumable class. Apart from
actions performed in the event of failures, the Assumable class has equivalent
functionality to all matlab.unittest qualifications.

When an assumption fails, the Assumable class throws an
AssumptionFailedException. The test running framework then marks the
test content as filtered and continues testing. Use assumptions to assure that
the test is run only when certain preconditions are satisfied, and when such
an event should not produce a test failure. It is important to note that the
test content should be exception safe. If the failure condition produces a test
failure, consider using assertions or verifications instead.

When an assumption failure occurs, matlab.unittest filters a method based on
its TestCase method attribute.

• Test methods — Filters the method, and runs subsequent Test methods.

• TestMethodSetup or TestMethodTeardown methods — Filters the method
which was to be run for that instance.

• TestClassSetup or TestClassTeardown methods — Filters the entire
TestCase class.

Since filtering test content through the use of assumptions does not produce
test failures, it has the possibility of creating dead test code. To monitor
filtered tests, check the Incomplete property in the TestResult class.

Assertable Qualifications
matlab.unittest produces assertions using the Assertable class. Apart from
actions performed in the event of failures, the Assertable class has equivalent
functionality to all matlab.unittest qualifications.

When an assertion fails, the Assertable class throws an
AssertionFailedException. Use assertions when a failure at the
assertion point renders the remainder of the current test method invalid, but
does not prevent proper execution of other test methods. Often, assertions
are used to assure that preconditions of the current test are not violated
or that fixtures are setup correctly, provided that all test fixtures can be
adequately torn down in the event of a failure. It is important to note that

27-9

27 Unit Testing

the test content must be exception safe. If the fixture teardown cannot be
made exception safe or is unrecoverable in the event of failure, consider using
fatal assertions instead.

The primary benefit of assertions is to allow remaining test methods to receive
coverage when preconditions are violated in a given test and all fixture state
is restorable. Assertions reduce the noise level of failures by not exercising
subsequent verifications which only fail due to such precondition failures. In
the event of a failure, however, the full content of the test method which
failed is marked as incomplete by the test running framework. Therefore,
if the failure does not affect the preconditions of the test or problems with
fixture setup or teardown, consider using verifications, which give the added
information for such failures that the full test content was run.

FatalAssertable Qualifications
matlab.unittest produces fatal assertions using the FatalAssertable class.
Apart from actions performed in the event of failures, the FatalAssertable
class has equivalent functionality to all matlab.unittest qualifications.

When a fatal assertion fails, the FatalAssertable class throws a
FatalAssertionFailedException. The test running framework displays
diagnostic information for the failure and aborts the entire test session. Use
this when a failure at the fatal assertion point renders the remainder of the
current test method invalid and the state is unrecoverable. Often, fatal
assertions are used in fixture teardown in order to guarantee the fixture state
is restored correctly. If it is not restored, the full testing session aborts and
you must restart MATLAB before resuming testing in order to maintain a
consistent MATLAB state. If the fixture teardown is recoverable and can be
made exception safe in the event of failure, consider using assertions instead.

The primary benefit of fatal assertions is to prevent false test failures due to
the failure of a prior test and its inability to restore test fixtures. In this
event, restart MATLAB to ensure testing resumes in a clean state.

Exception Safe
Test content is exception safe when all fixture teardown is performed with the
addTeardown method or through the appropriate object destructors when a

27-10

Select Qualification Type

failure occurs. This ensures that the failure does not affect subsequent testing
due to stale fixtures.

27-11

27 Unit Testing

Write Test Methods Using Verifications
This example shows how to use matlab.unittest.TestCase verifiable
qualifications in a test method. Verifications produce and record failures
without throwing an exception, meaning the currently running test runs to
completion.

DocPolynom Class Example

The DocPolynom class example, described in “A Polynomial Class”,
implements a class to represent polynomials in the MATLAB language. This
example creates a test case to verify arithmetic operations on objects of the
DocPolynom class.

DocPolynomTest Test Case

Refer to the following DocPolynomTest test case in the subsequent steps in
this example, which highlight specific functions in the file.

DocPolynomTest Class Definition File

classdef DocPolynomTest < matlab.unittest.TestCase
% Tests the DocPolynom class.

properties
msgEqn = 'Equation under test: ';

end

methods (TestClassSetup)
function addDocPolynomClassToPath(testCase)

testCase.addTeardown(@path, addpath(fullfile(matlabroot, ...
'help', 'techdoc', 'matlab_oop', 'examples')));

end
end

methods (Test)
function testConstructor(testCase)

p = DocPolynom([1, 0, 1]);
testCase.verifyClass(p, ?DocPolynom);

end

27-12

Write Test Methods Using Verifications

function testAddition(testCase)
p1 = DocPolynom([1, 0, 1]);
p2 = DocPolynom([5, 2]);

actual = p1 + p2;
expected = DocPolynom([1, 5, 3]);

msg = [testCase.msgEqn,...
'(x^2 + 1) + (5*x + 2) = x^2 + 5*x + 3'];

testCase.verifyEqual(actual, expected, msg);
end

function testMultiplication(testCase)
p1 = DocPolynom([1, 0, 3]);
p2 = DocPolynom([5, 2]);

actual = p1 * p2;
expected = DocPolynom([5, 2, 15, 6]);

msg = [testCase.msgEqn,...
'(x^2 + 3) * (5*x + 2) = 5*x^3 + 2*x^2 + 15*x + 6'];

testCase.verifyEqual(actual, expected, msg);
end

end
end

To execute the MATLAB commands in this example, add the
DocPolynomTest.m file to a folder on your MATLAB path.

Write Test to Verify Constructor

Create a function, testConstructor, using the verifyClass method to test the
DocPolynom class constructor.

function testConstructor(testCase)
p = DocPolynom([1, 0, 1]);
testCase.verifyClass(p, ?DocPolynom);

end

27-13

27 Unit Testing

Write Tests to Verify Operations

In the testAddition function, use the verifyEqual method to test the
equation (x^2 + 1) + (5*x + 2) = x^2 + 5*x + 3. The verifyEqual
method includes this equation in the diagnostic argument.

function testAddition(testCase)
p1 = DocPolynom([1, 0, 1]);
p2 = DocPolynom([5, 2]);

actual = p1 + p2;
expected = DocPolynom([1, 5, 3]);

msg = [testCase.msgEqn,...
'(x^2 + 1) + (5*x + 2) = x^2 + 5*x + 3'];

testCase.verifyEqual(actual, expected, msg);
end

The function, testMultiplication, tests multiplication operations.

Run Test Case

Run the tests in the DocPolynomTest test case.

tc = DocPolynomTest;
ts = matlab.unittest.TestSuite.fromClass(?DocPolynomTest);
res = run(ts);

Running DocPolynomTest
...
Done DocPolynomTest

All tests passed.

For more information, see:

• matlab.unittest.TestCase.verifyClass

• matlab.unittest.TestCase.verifyEqual

27-14

Write TestClassSetup Method Using Assumptions

Write TestClassSetup Method Using Assumptions
This example shows how to use matlab.unittest.TestCase assumable
qualifications in a TestClassSetup method.

Assumptions assure that a test runs only when certain preconditions are
satisfied and when such an event should not produce a test failure. When an
assumption failure occurs, the test is marked as filtered.

IsSupportedTest Test Case

Refer to the following IsSupportedTest test case in the subsequent steps in
this example, which highlight specific functions in the file.

IsSupportedTest Class Definition File

classdef IsSupportedTest < matlab.unittest.TestCase
methods(TestClassSetup)

function TestPlatform(testcase)
testcase.assumeFalse(ispc,...

'Do not run any of these tests on Windows.');
end

end
methods(Test)

function test1(testcase)
%write test code here

end
end

end

To execute the MATLAB commands in this example, add the
IsSupportedTest.m file to a folder on your MATLAB path.

Write Test to Verify Platform

All tests in this test case must run on UNIX platforms only. The
TestPlatform function uses the assumeFalse method to test if MATLAB is
running on a Windows platform. If it is, the test fails.

function TestPlatform(testcase)
testcase.assumeFalse(ispc,...

27-15

27 Unit Testing

'Do not run any of these tests on Windows.');
end

Make TestPlatform a TestClassSetup Test

To make the TestPlatform test a precondition, add it inside the methods
(TestClassSetup) block.

Run Test Case

Create a test case object and run the tests on a Windows platform.

tc = IsSupportedTest;
res = tc.run;

Running IsSupportedTest

===
All tests in IsSupportedTest were filtered.

Test Diagnostic: Do not run any of these tests on Windows.
Details

===

Done IsSupportedTest

Failure Summary:

Name Failed Incomplete Reason(s)
==
IsSupportedTest/test1 X Filtered by assumption.

The test(s) were filtered, and did not run (marked Incomplete).

Get Information About Failure

For more information, click the Details link.

===
The TestClassSetup or TestClassTeardown for IsSupportedTest was filtered by
All tests in this class were also filtered as a result.

27-16

Write TestClassSetup Method Using Assumptions

Test Diagnostic:

Do not run any of these tests on Windows.

Framework Diagnostic:

assumeFalse failed.
--> The value must evaluate to "false".

Actual Value:
1

Stack Information:

In C:\Program Files\MATLAB\R2013a\toolbox\matlab\testframework\+matlab\
In c:\work\IsSupportedTest.m (IsSupportedTest.TestPlatform) at 4

===

The link to IsSupportedTest.TestPlatform under Stack Information
takes you to the failed assumeFalse method.

For more information, see:

• “Filtered Tests” on page 27-42

• matlab.unittest.TestCase.assumeFalse

27-17

27 Unit Testing

Test for Preconditions Using Assertions
This example shows how to use matlab.unittest.TestCase assertable
qualifications to test for preconditions.

Write Test for DocPolynom Class Example

Use the DocPolynom class example, described in “A Polynomial Class”, to
create a test case to write a polynomial to a MAT-file.

Create DocPolynomSaveLoadTest Test Case

Refer to the following DocPolynomSaveLoadTest test case in the subsequent
steps in this example. The steps highlight specific code in the testSaveLoad
function; the code statements are not intended to be executed outside the
context of the class definition file.

DocPolynomSaveLoadTest Class Definition File

classdef DocPolynomSaveLoadTest < matlab.unittest.TestCase

methods (TestClassSetup)
function addDocPolynomClassToPath(testCase)

origPath = path;
testCase.addTeardown(@path, origPath);
addpath(fullfile(matlabroot, ...

'help', 'techdoc', 'matlab_oop', 'examples'));
end

end

methods (Test)
function testSaveLoad(testCase)

import matlab.unittest.diagnostics.Diagnostic;

%% Phase 1: Setup
% Create a temporary working folder
tempFolder = tempname;
[success, message] = mkdir(tempFolder);
testCase.assertTrue(success, ...

27-18

Test for Preconditions Using Assertions

Diagnostic.join('Could not create the temporary folder.',..
message));

testCase.addTeardown(@() testCase.cleanUpTemporaryFolder(tempFo

% Change to the temporay folder and register the
% teardown, which restores the original folder
origFolder = pwd;
testCase.addTeardown(@cd, origFolder);
cd(tempFolder);

%% Phase 2: Exercise
% Save the instance to a mat file.
p = DocPolynom([1, 0, 1]);
save('DocPolynomFile', 'p');

% Validate Precondition. The save resulted in a valid .mat file
testCase.assertEqual(exist('DocPolynomFile.mat','file'), 2, ...

Diagnostic.join('The mat file was not saved correctly.', ..
@() dir(pwd)));

loaded = load('DocPolynomFile');

%% Phase 3: Verify
testCase.verifyEqual(loaded.p, p, 'Loaded polynom did not equal

%% Phase 4: Teardown
% Done inline via calls to addTeardown at the points at which
% the state was changed.

end
end

methods(Access=private)
function cleanUpTemporaryFolder(testCase, tempFolder)

% Clean up the temporary folder and fatally assert that it was
% correctly cleaned up.

27-19

27 Unit Testing

import matlab.unittest.diagnostics.Diagnostic;

[success, message] = rmdir(tempFolder, 's');
testCase.fatalAssertTrue(success, ...

Diagnostic.join('Could not remove the temporary folder.',..
message));

end
end

end

To execute the MATLAB commands in Run DocPolynomSaveLoadTest Test
Case, add the DocPolynomSaveLoadTest.m file to a folder on your MATLAB
path.

Structure of testSaveLoad Test

The testSaveLoad function consists of the following phases:

• Phase 1: Setup — Create and verify precondition code.

• Phase 2: Exercise — Create a DocPolynom object and save it to a MAT-file.

• Phase 3: Verify — Test that object was successfully saved.

• Phase 4: Teardown — Execute teardown code.

Define Phase 1 Precondition

For this test, use a temporary folder for creating a DocPolynom object. The
precondition for continuing with this test is that the following commands
execute successfully.

tempFolder = tempname;
[success, message] = mkdir(tempFolder);

Test Results of mkdir Function

Use the assertTrue method to test the mkdir success argument for errors.
If an assertion occurs, the remainder of the testSaveLoad test method is
invalid, and the test is marked Incomplete.

27-20

Test for Preconditions Using Assertions

testCase.assertTrue(success, ...
Diagnostic.join('Could not create the temporary folder.', ...

message));

If the mkdir function fails, MATLAB displays the diagnostic message, Could
not create the temporary folder, as well as the contents of the mkdir
message argument.

Add Teardown Fixture Code

Creating a temporary folder is setup code, which requires a corresponding
call to the rmdir function to restore MATLAB to the original state. Use the
addTeardown method to ensure the teardown code executes even when an
exception is thrown in the middle of the test method. This makes the test
“Exception Safe” on page 27-10.

testCase.addTeardown(@() testCase.cleanUpTemporaryFolder(tempFolder));

Place Teardown Code in Helper Function

Although the addTeardown statement occurs in the same code block as the
mkdir setup statement, the cleanUpTemporaryFolder code is executed in
phase 4 of the test method.

In the DocPolynomSaveLoadTest test case, the helper function,
cleanUpTemporaryFolder, executes the rmdir function. For more information
about the cleanUpTemporaryFolder function, see “Write Helper Function
Using Fatal Assertions” on page 27-23.

Define Precondition for Creating Valid MAT-File

A precondition for verifying that the DocPolynom object was correctly saved
and loaded is that the MAT-file, DocPolynomFile.mat, was successfully
created. The following code in the Phase 2: Exercise block tests this
condition. If an assertion occurs, the remainder of the testSaveLoad test
method is invalid, and the test is marked Failed and Incomplete.

testCase.assertEqual(exist('DocPolynomFile.mat','file'), 2, ...
Diagnostic.join('The mat file was not saved correctly.', ...
@() dir(pwd)));

27-21

27 Unit Testing

If the file was not created, MATLAB displays the diagnostic message, The mat
file was not saved correctly, as well as the contents of the temporary
folder.

Run DocPolynomSaveLoadTest Test Case

tc = DocPolynomSaveLoadTest;
run(tc);

Running DocPolynomSaveLoadTest
.
Done DocPolynomSaveLoadTest

For more information, see:

• matlab.unittest.TestCase.assertTrue

• matlab.unittest.TestCase.assertEqual

• matlab.unittest.TestCase.addTeardown

• “Exception Safe” on page 27-10

27-22

Write Helper Function Using Fatal Assertions

Write Helper Function Using Fatal Assertions
This example uses a matlab.unittest.TestCase fatal assertable qualification
in a helper test. A fatal assertion renders the remainder of the current test
method invalid because the state is unrecoverable.

A helper function is a function in the TestCase class but not located within
any of the methods block statement. Execution of these functions is not
controlled by the matlab.unittest framework.

Write Function to Restore State

Refer to the helper function, cleanUpTemporaryFolder, in the
DocPolynomSaveLoadTest test case in the example, “Test for Preconditions
Using Assertions” on page 27-18.

Make cleanUpTemporaryFolder a Helper Function

Make the cleanUpTemporaryFolder function a helper function by placing
it inside a separate methods block.

methods(Access=private)
function cleanUpTemporaryFolder(testCase, tempFolder)

% code
end

end

Test Results of rmdir Function

Use the fatalAssertTrue method to test the rmdir success argument for
errors. If a fatal assertion occurs, the test run is aborted.

function cleanUpTemporaryFolder(testCase, tempFolder)

import matlab.unittest.diagnostics.Diagnostic;

[success, message] = rmdir(tempFolder, 's');
testCase.fatalAssertTrue(success, ...

Diagnostic.join('Could not remove the temporary folder.',...
message));

27-23

27 Unit Testing

end

If the rmdir function fails, then this test has failed to restore the state of
MATLAB and the machine at initial startup. Aborting prevents subsequent
tests to fail because MATLAB is left in an unexpected state by this test.

27-24

Write Setup and Teardown Code

Write Setup and Teardown Code

In this section...

“Test Fixtures” on page 27-25

“Test Case with Method-Level Setup Code” on page 27-25

“Test Case with Class-Level Setup Code” on page 27-26

Test Fixtures
Test fixtures are setup and teardown code that sets up the pretest state of
the system and returns it to the original state after running the test. Setup
and teardown methods are defined in the TestCase class by the following
method attributes:

• TestMethodSetup and TestMethodTeardown methods run before and after
each test method.

• TestClassSetup and TestClassTeardown methods run before and after all
test methods in the test case.

Test Case with Method-Level Setup Code
The following test case, FigurePropertiesTest, contains setup code at the
method level. The TestMethodSetup method creates a figure before running
each test, and TestMethodTeardown closes the figure afterwards.

classdef FigurePropertiesTest < matlab.unittest.TestCase

properties
TestFigure

end

methods(TestMethodSetup)
function createFigure(testCase)

%comment
testCase.TestFigure = figure;

end
end

27-25

27 Unit Testing

methods(TestMethodTeardown)
function closeFigure(testCase)

close(testCase.TestFigure);
end

end

methods(Test)

function defaultCurrentPoint(testCase)

cp = get(testCase.TestFigure, 'CurrentPoint');
testCase.verifyEqual(cp, [0 0], ...

'Default current point is incorrect')
end

function defaultCurrentObject(testCase)
import matlab.unittest.constraints.IsEmpty;

co = get(testCase.TestFigure, 'CurrentObject');
testCase.verifyThat(co, IsEmpty, ...

'Default current object should be empty');
end

end

end

Test Case with Class-Level Setup Code
The following test case, BankAccountTest, contains setup code at the class
level.

To setup the BankAccountTest, which tests the BankAccount class example
described in “Developing Classes — Typical Workflow”, add a TestClassSetup
method, addBankAccountClassToPath. This method adds the path to the
BankAccount example file.

classdef BankAccountTest < matlab.unittest.TestCase
% Tests the BankAccount class.

methods (TestClassSetup)

27-26

Write Setup and Teardown Code

function addBankAccountClassToPath(testCase)
testCase.addTeardown(@path, addpath(fullfile(matlabroot, ...

'help', 'techdoc', 'matlab_oop', 'examples')));
end

end

methods (Test)
function testConstructor(testCase)

b = BankAccount(1234, 100);
testCase.verifyEqual(b.AccountNumber, 1234, ...

'Constructor failed to correctly set account number');
testCase.verifyEqual(b.AccountBalance, 100, ...

'Constructor failed to correctly set account balance');
end

function testConstructorNotEnoughInputs(testCase)
import matlab.unittest.constraints.Throws;
testCase.verifyThat(@()BankAccount, ...

Throws('BankAccount:InvalidInitialization'));
end

function testDesposit(testCase)
b = BankAccount(1234, 100);
b.deposit(25);
testCase.verifyEqual(b.AccountBalance, 1125);

end

function testWithdraw(testCase)
b = BankAccount(1234, 100);
b.withdraw(25);
testCase.verifyEqual(b.AccountBalance, 75);

end

function testNotifyInsufficientFunds(testCase)
callbackExecuted = false;
function testCallback(~,~)

callbackExecuted = true;
end

b = BankAccount(1234, 100);

27-27

27 Unit Testing

b.addlistener('InsufficientFunds', @testCallback);

b.withdraw(50);
testCase.assertFalse(callbackExecuted, ...

'The callback should not have executed yet');
b.withdraw(60);
testCase.verifyTrue(callbackExecuted, ...

'The listener callback should have fired');
end

end
end

27-28

Qualifications Interface

Qualifications Interface
Qualifications are methods for testing values and responding to failures.
Qualification failures might or might not correspond to a test failure, and they
might or might not continue execution in the test when one is encountered.
To determine which qualification to use, see “Select Qualification Type” on
page 27-7.

The matlab.unittest.qualifications package consists of the following classes.
When you open the link, MATLAB displays help text in the Web Browser.

• matlab.unittest.qualifications.Assertable — Qualification which fails and
then filters test content.

• matlab.unittest.qualifications.Assumable — Qualification which filters
test content.

• matlab.unittest.qualifications.FatalAssertable — Qualification which
aborts test execution.

• matlab.unittest.qualifications.Verifiable — Qualification type for soft
failure conditions.

The package contains the following exception handling classes:

• matlab.unittest.qualifications.AssertionFailedException — MException
used for assertion failures.

• matlab.unittest.qualifications.AssumptionFailedException — MException
used for assumption failures.

• matlab.unittest.qualifications.FatalAssertionFailedException —
MException used for fatal assertions failures.

27-29

27 Unit Testing

Ways to Run Tests

In this section...

“Running Tests Directly from Test Cases” on page 27-30

“Running Tests from Test Suites” on page 27-30

Running Tests Directly from Test Cases
You can run a test method directly from the TestCase object using the run
convenience method. Do this to experiment with the TestCase methods, or to
prototype a test under development.

For an example, use the DocPolynomTest test case from “Write Test Methods
Using Verifications” on page 27-12. Create an instance of the class, tc, and
use the TestCase run method.

tc = DocPolynomTest;
res = run(tc);

Running DocPolynomTest
....
Done DocPolynomTest

Running Tests from Test Suites
To run a suite of tests in matlab.unittest, create a test runner from the
matlab.unittest.TestRunner class.

A TestRunner object runs and operates on TestSuite arrays and is responsible
for constructing the TestCase class instances containing test code, setting
up and tearing down fixtures, and executing the test methods. It ensures
that all of the test and fixture methods are run at the appropriate times
and in the appropriate manner, and records information about the run into
TestResult arrays. TestRunner is the only supported class with the ability to
run test content to ensure that tests are run in the manner guaranteed by
the TestCase interface.

For an example, see “Write Simple Test Case” on page 27-3.

27-30

Customize Test Runner with Plugins

Customize Test Runner with Plugins
This example shows how to add the a custom plugin to a test runner. The
matlab.unittest.plugins.TestSuiteProgressPlugin displays progress messages
about a test case. This plugin is part of the matlab.unittest package.
MATLAB uses it for default test runners.

This example uses the BankAccountTest test case described in “Test Case
with Class-Level Setup Code” on page 27-26.

Create Test Suite

Create a test suite, ts, from the BankAccountTest test case.

ts = matlab.unittest.TestSuite.fromClass(?BankAccountTest);

Show Results with No Plugins

Create a test runner with no plugins.

runner = matlab.unittest.TestRunner.withNoPlugins;
res = runner.run(ts);

No output displayed.

Customize Test Runner

Add the custom plugin, TestSuiteProgressPlugin.

import matlab.unittest.plugins.TestSuiteProgressPlugin;
runner.addPlugin(TestSuiteProgressPlugin);
res = runner.run(ts);

Running BankAccountTest
.....
Done BankAccountTest

MATLAB displays progress messages about BankAccountTest.

For information about MATLAB plugins, see:

27-31

27 Unit Testing

• “Plugins Interface” on page 27-33

27-32

Plugins Interface

Plugins Interface
Plugins customize a TestRunner object. The matlab.unittest.plugins package
consists of the following customized MATLAB plugins (classes). When you
open the link, MATLAB displays help text in the Web Browser.

• matlab.unittest.plugins.DiagnosticsValidationPlugin — Plugin to help
validate diagnostic code.

• matlab.unittest.plugins.FailureDiagnosticsPlugin — Plugin to show
diagnostics on failure.

• matlab.unittest.plugins.TestSuiteProgressPlugin — Plugin which outputs
progress information as text.

For an example, see “Customize Test Runner with Plugins” on page 27-31.

27-33

27 Unit Testing

Create Simple Test Suites
This example shows ways to combine tests into test suites, using the
SolverTest test case described in “Write Simple Test Case” on page 27-3.
Use the static from* methods in the matlab.unittest.TestSuite class to create
suites for combinations of your tests, whether they are organized in packages
and classes or files and folders, or both.

Import TestSuite Class

Add the matlab.unittest.TestSuite class to the current import list.

import matlab.unittest.TestSuite;

Make sure the SolverTest class definition file is on your MATLAB path.

Create Suite from SolverTest Class

The fromClass method creates a suite from all Test methods in the
SolverTest class.

suiteClass = TestSuite.fromClass(?SolverTest);
result = run(suiteClass);

Create Suite from SolverTest Class Definition File

The fromFile method creates a suite using the name of the file to identify
the class.

suiteFile = TestSuite.fromFile('SolverTest.m');
result = run(suiteFile);

Create Suite from All Test Case Files in Current Folder

The fromFile method creates a suite from all test case files in the specified
folder. For example, the following files are in the current folder:

27-34

Create Simple Test Suites

• BankAccountTest.m

• DocPolynomTest.m

• FigurePropertiesTest.m

• IsSupportedTest.m

• SolverTest.m

suiteFolder = TestSuite.fromFolder(pwd);
result = run(suiteFolder);

Create Suite from Single Test Method

The fromMethod method creates a suite from a single test method.

suiteMethod = TestSuite.fromMethod(?SolverTest,'testRealSolution')'
result = run(suiteMethod);

For more information, see:

• TestSuite

27-35

27 Unit Testing

Analyze Test Case Results
This example shows the information returned by a test runner created from
the SolverTest test case. This test is described in the “Write Simple Test
Case” on page 27-3 example.

Run SolverTest Test Case

Create a test suite, quadTests.

quadTests = matlab.unittest.TestSuite.fromClass(?SolverTest);
result = run(quadTests);

Running SolverTest
..
Done SolverTest

All tests passed.

Explore Output Argument, result

The output argument, result, is a matlab.unittest.TestResult object. It
contains information of the four tests in SolverTest.

whos result

Name Size Bytes Class

result 1x2 248 matlab.unittest.TestResult

Display Information for One Test

To see the information for one value, type:

result(1)

ans =
TestResult with properties:

Name: 'SolverTest/testRealSolution'

27-36

Analyze Test Case Results

Passed: 1
Failed: 0

Incomplete: 0
Duration: 0.0244

Totals:
1 Passed, 0 Failed, 0 Incomplete.
0.024365 seconds testing time.

27-37

27 Unit Testing

Analyze Failed Test Results
This example shows how to identify and rerun failed tests.

Create an Incorrect Test Method

Using the SolverTest test case, add a method, testBadRealSolution. This
test, based on testRealSolution, calls the quadraticSolver function with
inputs 1,3,2, but tests the results against an incorrect solution, [2,1].

function testBadRealSolution(testCase)
actSolution = quadraticSolver(1,3,2);
expSolution = [2,1];
testCase.verifyEqual(actSolution,expSolution);

end

Run New Test Suite

Save the updated SolverTest class definition and rerun the tests.

quadTests = matlab.unittest.TestSuite.fromClass(?SolverTest);
result1 = run(quadTests);

Running SolverTest
.
===
Verification failed in SolverTest/testBadRealSolution.

Framework Diagnostic:

verifyEqual failed.
--> NumericComparator failed.

--> The values are not equal using "isequaln".

Actual Value:
-1 -2

Expected Value:
2 1

27-38

Analyze Failed Test Results

Stack Information:

In C:\Program Files\MATLAB\R2013a\toolbox\matlab\testframework\+matlab\
In c:\work\SolverTest.m (SolverTest.testBadRealSolution) at 15

===
....
Done SolverTest

Failure Summary:

Name Failed Incomplete Reason(s)
===
SolverTest/testBadRealSolution X Failed by verifica

>>

Analyze Results

The output tells you SolverTest/testBadRealSolution failed. From the
Framework Diagnostic you see the following:

Actual Value:
-1 -2

Expected Value:
2 1

At this point, you must decide if the error is in quadraticSolver or in your
value for expSolution.

Correct Error

Edit the value of expSolution in testBadRealSolution:

expSolution = [-1 -2];

Rerun Tests

Save SolverTest and rerun only the failed tests.

failedTests = quadTests([result1.Failed]);

27-39

27 Unit Testing

result2 = run(failedTests)

Running SolverTest
.
Done SolverTest

result2 =
TestResult with properties:

Name: 'SolverTest/testBadRealSolution'
Passed: 1
Failed: 0

Incomplete: 0
Duration: 0.0124

Totals:
1 Passed, 0 Failed, 0 Incomplete.
0.012382 seconds testing time.

27-40

Diagnostics Interface

Diagnostics Interface
Use diagnostics to communicate relevant information in the event of a failure.
To add a diagnostic message to a test case, use the diagnostic argument in
any of the matlab.unittest.TestCase qualification methods. The framework
also displays diagnostic messages related to the nature of the qualification
failure.

The matlab.unittest.diagnostics package consists of the following classes.
When you open the link, MATLAB displays help text in the Web Browser.

• matlab.unittest.diagnostics.Diagnostic — Fundamental interface for
matlab.unittest diagnostics.

• matlab.unittest.diagnostics.ConstraintDiagnostic — Diagnostics specific to
matlab.unittest constraints.

• matlab.unittest.diagnostics.DisplayDiagnostic — A diagnostic using a
value’s displayed output.

• matlab.unittest.diagnostics.FunctionHandleDiagnostic — A diagnostic
using a function’s displayed output.

• matlab.unittest.diagnostics.StringDiagnostic — A simple string diagnostic.

27-41

27 Unit Testing

Filtered Tests

In this section...

“Test Methods” on page 27-42

“Method Setup and Teardown Code” on page 27-42

“Class Setup and Teardown Code” on page 27-42

Assumption failures produce filtered tests. In the matlab.unittest.TestResult
class, such a test is marked Incomplete.

Since filtering test content through the use of assumptions does not produce
test failures, it has the possibility of creating dead test code. Avoiding this
requires monitoring of filtered tests.

Test Methods
If an assumption failure is encountered inside of a TestCase method with the
Test attribute, the entire method is marked as filtered, but MATLAB runs
the subsequent Test methods.

Method Setup and Teardown Code
If an assumption failure is encountered inside a TestCase method with the
TestMethodSetup or TestMethodTeardown attribute, MATLAB filters the
method which was to be run for that instance.

Class Setup and Teardown Code
If an assumption failure is encountered inside of a TestCase method with
the TestClassSetup or TestClassTeardown attribute, MATLAB filters the
entire TestCase class.

27-42

Constraints Interface

Constraints Interface

In this section...

“Fundamental Constraint-Related Interfaces” on page 27-43

“Constraint Implementations” on page 27-43

“ActualValueProxies” on page 27-46

“Tolerances” on page 27-46

“Comparators” on page 27-47

Constraints specify business rules against which to qualify a calculated
value. Use constraints in conjunction with the matlab.unittest.TestCase
qualification methods assertThat, assumeThat, fatalAssertThat, or
verifyThat. Constraints determine whether or not a calculated (actual) value
satisfies the constraint. Constraints also provide diagnostics.

The matlab.unittest.constraints package consists of the following classes.
When you open the link, MATLAB displays help text in the Web Browser.

Fundamental Constraint-Related Interfaces

• matlab.unittest.constraints.Constraint — Fundamental interface for
comparisons.

• matlab.unittest.constraints.BooleanConstraint — Interface for boolean
combinations of constraints.

Constraint Implementations
The constraint implementation classes can be grouped into the following
categories.

• “General Purpose” on page 27-44

• “Errors and Warnings” on page 27-44

• “Inequalities” on page 27-44

• “Array Size” on page 27-45

27-43

27 Unit Testing

• “Type” on page 27-45

• “Strings” on page 27-45

• “Finiteness” on page 27-46

• “Numeric Attributes” on page 27-46

General Purpose

• matlab.unittest.constraints.IsTrue — Constraint specifying a true value.

• matlab.unittest.constraints.IsFalse — Constraint specifying a false value.

• matlab.unittest.constraints.IsEqualTo — General constraint used to
compare various MATLAB types.

• matlab.unittest.constraints.IsSameHandleAs — Constraint specifying the
same handle instance(s) to another.

• matlab.unittest.constraints.ReturnsTrue — Constraint specifying a
function handle that returns true.

• matlab.unittest.constraints.Eventually — Poll for a value to asynchronously
satisfy a constraint.

Errors and Warnings

• matlab.unittest.constraints.Throws — Constraint specifying a function
handle that throws an MException.

• matlab.unittest.constraints.IssuesWarnings — Constraint specifying a
function that issues an expected warning profile.

• matlab.unittest.constraints.IssuesNoWarnings — Constraint specifying a
function that issues no warnings.

Inequalities

• matlab.unittest.constraints.IsGreaterThan — Constraint specifying a
value greater than another value.

• matlab.unittest.constraints.IsGreaterThanOrEqualTo — Constraint
specifying a value greater than or equal to another value.

27-44

Constraints Interface

• matlab.unittest.constraints.IsLessThan — Constraint specifying a value
less than another value.

• matlab.unittest.constraints.IsLessThanOrEqualTo — Constraint
specifying a value less than or equal to another value.

Array Size

• matlab.unittest.constraints.IsEmpty — Constraint specifying an empty
value.

• matlab.unittest.constraints.HasLength — Constraint specifying an
expected length of an array.

• matlab.unittest.constraints.HasSize — Constraint specifying an expected
size of an array.

• matlab.unittest.constraints.HasElementCount — Constraint specifying
an expected number of elements.

Type

• matlab.unittest.constraints.IsInstanceOf — Constraint specifying inclusion
in a given class hierarchy.

• matlab.unittest.constraints.IsOfClass — Constraint specifying a given
exact type.

Strings

• matlab.unittest.constraints.ContainsSubstring — Constraint specifying a
string containing a substring.

• matlab.unittest.constraints.IsSubstringOf — Constraint specifying a
substring of another string.

• matlab.unittest.constraints.EndsWithSubstring — Constraint specifying
a string ending with a substring.

• matlab.unittest.constraints.StartsWithSubstring — Constraint specifying
a string starting with a substring.

27-45

27 Unit Testing

• matlab.unittest.constraints.Matches — Ensure that a string matches a
given regular expression.

Finiteness

• matlab.unittest.constraints.HasNaN — Constraint specifying an array
containing a NaN value.

• matlab.unittest.constraints.HasInf — Constraint specifying an array
containing any infinite value.

• matlab.unittest.constraints.IsFinite — Constraint specifying a finite value.

Numeric Attributes

• matlab.unittest.constraints.IsReal — Constraint specifying a real valued
array.

• matlab.unittest.constraints.IsSparse — Constraint specifying a sparse
array.

ActualValueProxies

• matlab.unittest.constraints.AnyElementOf — Test if any element of a
matrix value meets a constraint .

• matlab.unittest.constraints.EveryElementOf — Test if all elements of a
matrix value meet a constraint.

• matlab.unittest.constraints.AnyCellOf — Test if any cell of a cell array
meets a constraint .

• matlab.unittest.constraints.EveryCellOf — Test if all cells of a cell array
meet a constraint.

Tolerances

• matlab.unittest.constraints.Tolerance — Abstract interface for tolerances.

• matlab.unittest.constraints.AbsoluteTolerance — Absolute numeric
tolerance.

27-46

Constraints Interface

• matlab.unittest.constraints.RelativeTolerance — Relative numeric
tolerance .

Comparators

• matlab.unittest.constraints.CellComparator — Comparator for comparing
MATLAB cell arrays.

• matlab.unittest.constraints.LogicalComparator — Comparator for
comparing two MATLAB logical values.

• matlab.unittest.constraints.NumericComparator — Comparator for
comparing MATLAB numeric data types.

• matlab.unittest.constraints.ObjectComparator — Comparator for
comparing two MATLAB class or Java objects.

• matlab.unittest.constraints.StringComparator — Comparator for
comparing two MATLAB strings.

• matlab.unittest.constraints.StructComparator — Comparator for
comparing MATLAB structs.

27-47

27 Unit Testing

27-48

Index

IndexSymbols and Numerics
() symbol

for indexing into an array 2-81
for specifying function input arguments 2-82

[] symbol
for argument placeholder 2-87
for concatenating arrays 2-86
for constructing an array 2-85
for specifying function return values 2-86

{ } symbol
for constructing a cell array 2-78
for indexing into a cell array 2-78

! symbol
for entering a shell escape function 2-81

% symbol
for specifying character conversions 2-82
for writing single-line comments 2-82

' symbol
for constructing a character array 2-84

* symbol
for filename wildcards 2-75

, symbol
for separating array indices 2-77
for separating array row elements 2-77
for separating input or output

arguments 2-78
for separating MATLAB commands 2-78

. symbol
decimal point 2-78
for defining a structure field 2-79
for specifying object methods 2-79

: symbol
for converting to a column vector 2-77
for generating a numeric sequence 2-76
for preserving array shape on

assignment 2-77
for specifying an indexing range 2-76

; symbol
for separating rows of an array 2-83
for suppressing command output 2-83

@ symbol
for class folders 2-76
for constructing function handles 2-75

.() symbol
for creating a dynamic structure field 2-81

%{ and %} symbols
for writing multiple-line comments 2-82

{% block comment symbol 14-4
.. symbol

for referring to a parent folder 2-79
... symbol

for continuing a command line 2-79

A
accuracy of calculations 2-13
addition operator 2-2
and (function equivalent for &) 2-6
anonymous functions 15-23

changing variables 15-24
constructing 15-23
evaluating variables 15-24
in cell arrays 15-28
multiple anonymous functions 15-25
passing a function to integral 15-23
with no input arguments 15-26

answer, assigned to ans 2-13
arguments

checking 16-14
checking number of 16-2
function 15-2
memory requirements 24-6
order in argument list 16-4
order of outputs 16-6
parsing 16-17
passing 1-12
passing variable number 16-4
to nested functions 16-11

arithmetic operators 2-2
array headers

Index-1

Index

memory requirements 24-4
arrays

cell array of strings 6-7
copying 24-3
of strings 6-3
variable names 1-8

assert
formatting strings 6-10

asv 19-6
autoinit cells

defining 18-47
AutoInit style

definition of 18-52
automatic fix

Code Analyzer 19-9
autosave files 19-6

B
back and forward navigation 19-39
backtrace mode

warning control 21-40
backup files

MATLAB Editor autosave and 19-6
base (numeric), converting 6-31
binary from decimal conversion 6-31
blank spaces in MATLAB commands 1-10
blanks

finding in string arrays 6-27
block comments 14-4
Blocks of LaTeX math symbols

in published MATLAB code 18-21
blue breakpoint icon 17-26
bold text

in published MATLAB code 18-13
within cell 18-13

bookmarks
in files in Editor 19-35

breakpoints
anonymous functions 17-26

blue icon 17-26
clearing (removing) 17-19
clearing, automatically 17-20
conditional 17-24
disabling and enabling 17-18
multiple per line 17-26
running file 17-8
setting 17-5
types 17-5

C
caching

files 19-5
calc zones

defining 18-51
evaluating 18-52

callback functions
creating 22-15
specifying 22-17

calling MATLAB® functions
storing as pseudocode 20-9

capitalization in MATLAB 1-10
case conversion 6-35
case sensitivity in MATLAB 1-10
cell arrays 8-1

creating 8-3
of strings 6-7

comparing strings 6-26
functions 6-8

with anonymous function elements 15-28
cell groups

evaluating 18-49
output from 18-49

cell markers
defined 18-47

cell mode 14-6
cell scripts 14-6
cells

files and 14-6

Index-2

Index

cells in files 14-6
character arrays

categorizing characters of 6-27
comparing 6-25
comparing values on cell arrays 6-26
conversion 6-30
converting to cell arrays 6-7
converting to numeric 6-32
creating 6-2
delimiting character 6-28
evaluating 2-69
finding a substring 6-28
functions 6-36
functions that create 6-35
functions that modify 6-35
in cell arrays 6-7
scalar 6-26
searching and replacing 6-28
searching or comparing 6-36
token 6-28
two-dimensional 6-3
using relational operators on 6-26

characters
conversion, in format specification

string 6-15
corresponding ASCII values 6-33
finding in string 6-27

characters and strings 6-2
checkin

on UNIX platforms 26-31
checking in files

on UNIX platforms 26-30
checking out files

on UNIX platforms 26-32
on Windows platforms 26-11
undoing on UNIX platforms 26-35
undoing on Windows platforms 26-12

checkout
on UNIX platforms 26-33

classes 3-2

cell arrays 8-1
cell arrays of strings 6-7
combining unlike classes 11-2
complex numbers 4-18
determining 6-36
floating point 4-7

double-precision 4-7
single-precision 4-8

infinity 4-20
integers 4-3
logical 5-2
NaN 4-20
numeric 4-2
precedence 11-2

classes, Map 10-1 10-4
methods 10-5
properties 10-4

classes, matlab
overview 13-1

clear 24-12
ClearCase source control system

configuring on UNIX platforms 26-28
code

automatically analyzing for warnings and
errors 19-7

checking 19-52
Code Analyzer messages

suppressing 19-13
Code Analyzer Report 19-52

checking MATLAB code 19-52
code cells

evaluating 14-7
files and 14-6

code cells in files
modifying values in 14-8
nested 14-13

code folding
viewing code in Tooltip 19-26

code folding in files 19-25
code iteration 14-6

Index-3

Index

collapsing
code in files 19-25

Collatz problem 17-3
colors

printing MATLAB Notebook 18-52
comma-separated lists 2-61

assigning output from 2-63
assigning to 2-64
FFT example 2-67
generating from cell array 2-61
generating from structure 2-62
usage 2-65

concatenation 2-66
constructing arrays 2-65
displaying arrays 2-66
function call arguments 2-66
function return values 2-67

command/function duality 1-12
comments

block 14-4
in scripts and functions 14-4
marking up within code cell 18-11

comparing
strings 6-25

comparing working copy to source control version
on Windows platforms 26-18

complex arrays
memory requirements 24-7

complex conjugate transpose operator 2-2
complex number functions 4-27
complex numbers 4-18

creating 4-18
computer 2-13
computer type 2-13
concatenation

of unlike data types 11-2
conditional breakpoints 17-24
configuration management

See source control system interface 26-1
configurations

See also run configurations 15-7
configuring Notebook 18-56
containers, Map 10-1

concatenating 10-13
constructing objects of 10-6
examining contents of 10-9
mapping to different types 10-18
modifying a copy of 10-16
modifying keys 10-16
modifying values 10-15
reading from 10-11
removing keys and values 10-15
writing to 10-12

Contents Report 25-13
control statements

break 2-17
case 2-15
conditional control 2-15
else 2-15
elseif 2-15
for 2-17
if 2-15
loop control 2-17
otherwise 2-15
switch 2-15
while 2-17

conversion
Word document to MATLAB Notebook 18-45

conversion characters in format specification
string 6-15

converting
cases of strings 6-35
dates 2-19
numbers 6-30
numeric to string 6-30
string to numeric 6-32
strings 6-30

converting numeric and string classes 6-37
converting numeric and string data types 6-37
converting numeric to string 6-30

Index-4

Index

converting string to numeric 6-32
Coverage Report 23-27
cputime

versus tic and toc 23-3
creating

cell array 8-3
strings 6-2
timer objects 22-5

D
data consistency

in MATLAB Notebook 18-55
data organization

structure arrays 7-16
data tips

example 17-13
data types 3-2

cell arrays 8-1
cell arrays of strings 6-7
complex numbers 4-18
determining 6-36
floating point 4-7

double-precision 4-7
single-precision 4-8

infinity 4-20
integers 4-3
logical 5-2
NaN 4-20
numeric 4-2
precedence 11-2

dates
handling and converting 2-19

dbclear 17-19
dbstop

example 17-8
Debugger 17-1
debugging

ending 17-17
example 17-3

features 17-2
Notebook 18-55
prompt 17-9
stepping 17-10
with unsaved changes 17-23

decimal representation
to binary 6-31
to hexadecimal 6-31

delaying program execution
using timers 22-2

delimiter in string 6-28
Dependency Report 20-3
disabling

breakpoints 17-18
displaying source control properties of a

file 26-20
division operators

left division 2-2
matrix left division 2-2
matrix right division 2-2
right division 2-2

document titles
in published MATLAB code 18-11

double-precision matrix 3-2 4-2
duality, command/function 1-12
dynamic field names in structure arrays 7-11
dynamic hyperlinks

inserting in published code 18-23
inserting to run MATLAB code 18-23

dynamic regular expressions 2-52

E
editing

MATLAB files 19-1
Editor 19-1

example 17-3
go to

bookmark 19-35
function 19-35

Index-5

Index

line number 19-35
modifying values 14-7
navigating 19-35
navigating back and forward 19-39
opening files in 19-2
rule displayed 19-25
running files 15-7
running with unsaved changes 17-23

element-by-element organization for
structures 7-18

empty arrays
and relational operators 2-4

eps 2-13
epsilon 2-13
equal to operator 2-3
error

formatting strings 6-10
error breakpoints

stop for errors 17-28
error message identifiers 17-30
error style

definition 18-52
errors

source control 26-24
errors and warnings

analyzing code for 19-7
escape characters

in format specification string 6-11
Evaluate Loop dialog box 18-50
evaluating

string containing MATLAB expression 2-69
examples

checking number of function arguments 16-2
for 2-17
while 2-17

expanding
code in files 19-25

expressions
involving empty arrays 2-4
most recent answer 2-13

scalar expansion with 2-3
external program, running from MATLAB 2-73

F
f button 19-35
F Inc Search field 19-34
field names

dynamic 7-11
file management system

See source control system interface 26-1
filenames

wildcards 2-75
files

backing up 19-4 19-6
code cells and 14-6
comments 14-4
kinds 14-16
naming 15-2
opening 19-2
performance of 23-4
profiling 23-4
publishing 18-6

bold text 18-13
graphics 18-16
HTML markup tags 18-25
inline LaTeX math symbols 18-20
italic text 18-13
LaTeX markup 18-26
LaTeX math symbols as blocks 18-21
lists 18-14
monospaced text 18-13
preformatted text 18-15
sample code with syntax

highlighting 18-16
trademark symbols 18-14

recommendations on saving 19-5
run configurations for 15-7
running in Editor 15-7
running sections of 14-6

Index-6

Index

saving 19-4
saving automatically in Editor 19-6
snapshot of output in published MATLAB

code 18-19
summary of markup for publishing 18-8

Files
opening file or variable from 19-40

find function
and subscripting 2-8

finding
substring within a string 6-28

fix me reports 19-45
floating point 4-7
floating point, double-precision 4-7

converting to 4-9
creating 4-8
maximum and minimum values 4-11

floating point, single-precision 4-8
converting to 4-9
creating 4-9
maximum and minimum values 4-12

floating-point functions 4-27
floating-point numbers

largest 2-13
smallest 2-13

floating-point relative accuracy 2-13
flow control

break 2-17
case 2-15
conditional control 2-15
else 2-15
elseif 2-15
for 2-17
if 2-15
loop control 2-17
otherwise 2-15
switch 2-15
while 2-17

folders
MATLAB

caching 19-5
private functions for 15-41

for
example 2-17

for loop 2-17
format

controlling numeric format in MATLAB
Notebook 18-53

format for numeric values 4-23
formatting strings 6-10

field width 6-17
flags 6-18
format operator 6-13
precision 6-17
setting field width 6-20 to 6-21
setting precision 6-20 to 6-21
subtype 6-16
using identifiers 6-22
value identifiers 6-20

fprintf
formatting strings 6-10

function calls
memory requirements 24-6

function definition line
for local function 15-30
syntax 15-2

function handles
example 9-13
for nested functions 15-35
maximum name length 9-4
naming 9-4
operations on 9-27
overview of 9-2

function workspace 15-9
functions

arguments
passing variable number of 16-4

body 15-2 to 15-3
calling

command syntax 1-12

Index-7

Index

function syntax 1-6 1-12
passing arguments 1-6 1-12

cell arrays of strings 6-8
character arrays 6-36
comments 14-4
comparing character arrays 6-36
complex number 4-27
example 14-16
floating-point 4-27
infinity 4-28
integer 4-26
logical array 5-6
modifying character arrays 6-35
NaN 4-28
numeric and string conversion 6-37
numeric to string conversion 6-30
output formatting 4-28
searching character arrays 6-36
storing as pseudocode 20-9
string to numeric conversion 6-32
that determine data type 6-36
type identification 4-28
types of 15-19

anonymous 15-23
local functions 15-30
nested 15-32
private 15-41

G
get latest version of file on Windows

platforms 26-14
getting files 26-32
global variables 15-12
graphical debugger 17-1
graphics

in MATLAB Notebooks 18-53
in published MATLAB code 18-16
within cell 18-14

gray breakpoint icons 17-8

greater than operator 2-3
greater than or equal to operator 2-3

H
H1 line 15-5
headings

within code cell 18-11
help

and H1 line 15-5
creating for program files 15-5
file 15-5

Help Report 25-10
help text 15-5
hexadecimal, converting from decimal 6-31
history

source control on Windows platforms 26-16
HTML markup tags

in published MATLAB code 18-25
hyperlinks

inserting in published code 18-23
running functions by 20-12

I
imaginary unit 2-13
incremental searching

in Editor 19-34
indented text

within cell 18-14
indenting

in Editor 19-23
Inf 2-13
infinity 4-20

functions 4-28
represented in MATLAB 2-13

info.xml validation errors 25-23
inline LaTeX math symbols

in published MATLAB code 18-20
input cells

Index-8

Index

evaluating cell groups 18-49
evaluating in loop 18-49
maintaining consistency 18-55

Input style
definition of 18-52

inputParser class 16-17
integer functions 4-26
integers 4-3

creating 4-4
largest system can represent 2-13
smallest system can represent 2-13

intmax 2-13
intmin 2-13
invalid breakpoints 17-8
italic text

in published MATLAB code 18-13
within cell 18-13

iterative programming 14-6

K
K>> prompt in Command Window

debugging mode 17-9

L
large data sets

memory usage in array storage 24-3
memory usage in function calls 24-16

LaTeX display math
in published MATLAB code 18-21

LaTeX markup
in MATLAB code 18-26

less than operator 2-3
less than or equal to operator 2-3
line

vertical
in Editor 19-25

line numbers
going to 19-35

lists
in published MATLAB code 18-14
within cell 18-14

load 24-12
local functions 15-30

going to in file 19-35
local variables 15-9
locking files on checkout 26-32
logical array functions 5-6
logical class 5-2
logical data types 5-2
logical expressions

and subscripting 2-8
logical operators 2-4

bit-wise 2-9
element-wise 2-5
short-circuit 2-10

lookfor
and H1 line 15-5

looping
to evaluate input cells 18-49

loops
for 2-17
while 2-17

lowercase usage in MATLAB 1-10

M
Map class 10-1 10-4

constructing objects of 10-6
methods 10-5
properties 10-4

Map objects 10-1
concatenating 10-13
constructing 10-6
examining contents of 10-9
mapping to different types 10-18
modifying a copy of 10-16
modifying keys 10-16
modifying values 10-15

Index-9

Index

reading from 10-11
removing keys and values 10-15
writing to 10-12

MATLAB
programming

scripts 14-2
version 2-13

MATLAB code file comments
purpose of 14-4

MATLAB functions
running by hyperlink 20-12

MATLAB Notebooks
creating 18-44
data integrity 18-55
entering text and commands 18-45
evaluating all input cells 18-50
modifying style template 18-52
styles 18-52

matlab:
running functions with 20-12

matrices
constructing a matrix operations

constructing 1-3
double-precision 3-2 4-2
single-precision 3-2 4-2

matrix 1-3
measuring performance of your code 23-4
memory

making efficient use of 24-2
management 24-12
Out of Memory message 24-23

memory requirements
array headers 24-4
for array allocation 24-2
for complex arrays 24-7
for copying arrays 24-3
for creating and modifying arrays 24-2
for handling variables in 24-2
for numeric arrays 24-7
for passing arguments 24-6

for sparse matrices 24-7
message identifiers 17-30
messages

suppressing 19-13
suppressing indicators 19-13

methods
determining which is called 15-44

Microsoft Word
converting document to MATLAB

Notebook 18-45
monospaced text

in published MATLAB code 18-13
within cell 18-13

multiplication operators
matrix multiplication 2-2
multiplication 2-2

N
NaN 2-13 4-20

functions 4-28
logical operations on 4-21

nargin
checking input arguments 16-2
in nested functions 16-11

nargout
in nested functions 16-11

navigating
files 19-35

nested
code cells in files 14-13

nested functions 15-32
passing optional arguments 16-11
using function handles with 15-35
variable scope in 15-33

newlines in string arrays 6-27
Normal style (Microsoft Word)

default style in MATLAB Notebook 18-52
defaults 18-52

not (function equivalent for ~) 2-6

Index-10

Index

not a number (NaN) 4-20
not equal to operator 2-3
Not-a-Number 2-13
notebook

function 18-44
overview 18-44
platforms supported 18-44

Notebook
configuring 18-56
debugging 18-55

Notebook menu
Word menu bar 18-44

number of arguments 16-2
numeric arrays

memory requirements 24-7
numeric classes 4-2

conversion functions 6-37
converting to char 6-30
setting display format 4-23

numeric data types 4-2
conversion functions 6-37
setting display format 4-23

numeric format
controlling in MATLAB Notebook 18-53

numeric to string conversion
functions 6-30

O
objects

definitions of 12-2
key concepts 12-8

operator precedence 2-11
overriding 2-12

operators
addition 2-2
arithmetic 2-2
categories 2-2
colon 2-2
complex conjugate transpose 2-2

equal to 2-3
greater than 2-3
greater than or equal to 2-3
left division 2-2
less than 2-3
less than or equal to 2-3
logical 2-4

bit-wise 2-9
element-wise 2-5
short-circuit 2-10

matrix left division 2-2
matrix multiplication 2-2
matrix power 2-2
matrix right division 2-2
multiplication 2-2
not equal to 2-3
power 2-2
relational 2-3
right division 2-2
subtraction 2-2
transpose 2-2
unary minus 2-2
unary plus 2-2

optimization
preallocation, array 23-29
vectorization 23-33

optimizing code performance 23-4
or (function equivalent for |) 2-6
orange underline in file 19-9
organizing data

structure arrays 7-16
Out of Memory message 24-23
output arguments 15-2

order of 16-6
output cells

converting to text 18-50
output formatting functions 4-28
Output style

definition 18-52

Index-11

Index

P
pack 24-12
packages

use in references 12-11
parentheses

for input arguments 15-2
overriding operator precedence with 2-12

parsing input arguments 16-17
pausing execution of file 17-5
percent sign (comments) 14-4
performance

analyzing 23-2
improving for you code 23-4

persistent variables 15-12
pi 2-13
plane organization for structures 7-16
power operators

matrix power 2-2
power 2-2

preallocation
arrays 23-29

precedence
of class 11-2
of data types 11-2
operator 2-11

overriding 2-12
preformatted text

in published MATLAB code 18-15
printing a MATLAB Notebook

color 18-52
private folder 15-41
private functions 15-41
profile 23-20

example 23-21
profiling 23-4
program control

break 2-17
case 2-15
conditional control 2-15
else 2-15

elseif 2-15
for 2-17
if 2-15
loop control 2-17
otherwise 2-15
switch 2-15
while 2-17

program files
local function 15-30

programming
files 14-16

programs
running external 2-73

prompt
when debugging 17-9

properties
source control on Windows platforms 26-20

pseudocode 20-9
publish configuration

creating multiple 18-41
running 18-40

publish configurations
porting 18-43

publish_configurations.m file 18-42
publishing

MATLAB code and results 18-1

Q
quit 24-13

R
R Inc Search field 19-34
rapid code iteration 14-6
rapid development 14-6
realmax 2-13
realmin 2-13
red breakpoint icons 17-8
red underline in file 19-9

Index-12

Index

registered trademarks
within cell 18-14

regular expression operators
dynamic expressions

pattern matching functions 2-54
pattern matching scripts 2-55
replacement expressions 2-53
string replacement functions 2-58

token operators
create named token

((?<name>expr)) 2-50
if token, match expr1, else expr2

((?(token)expr1|expr2)) 2-37
regular expressions

character types 2-32
conditional expressions 2-37
dynamic expressions 2-52
introduction 2-26
tokens 2-46

example 1 2-48
example 2 2-47
named capture 2-50
use in replacement string 2-50

relational operators 2-3
empty arrays 2-4
strings 6-26

removing files from source control system 26-15
replacing substring within string 6-28
Report

Code Analyzer 19-52
reports

Contents 25-13
Dependency 20-3
Help 25-10
To do 19-45
TODO/FIXME 19-45

Reports
Coverage 23-27
Fix me 19-45

revision control

See source control system interface 26-1
right-hand text limit 19-25
rule

in Editor 19-25
run configurations

creating 15-7
for files in Editor 15-7
using 15-7

S
save 24-12
scalar

and relational operators 6-26
expansion 2-3
string 6-26

scheduling program execution
using timers 22-2

scripts 14-16
example 14-16

searching
text

incrementally 19-34
setting breakpoints 17-5
shell escape functions 2-73
short-circuiting

in conditional expressions 2-7
operators 2-10

show file history on Windows platforms 26-16
Simulink model

opening from a file 19-40
single-precision matrix 3-2 4-2
smallest value system can represent 2-13
source code

protecting 20-9
source control on UNIX platforms

getting files 26-32
locking files 26-32

source control system interface 26-1
UNIX platforms 26-26

Index-13

Index

preferences 26-27
selecting system 26-27
supported systems 26-26

Windows platforms
adding files 26-9
preferences 26-5
selecting system 26-5
supported systems 26-2

source control system interface on UNIX
platforms
checking in files 26-30
checking out files 26-32
configuring ClearCase source control

system 26-28
undoing file check-out 26-35

source control system interface on Windows
platforms
checking out files 26-11
comparing working copy to source control

version 26-18
displaying file properties 26-20
get latest version of file 26-14
removing files 26-15
showing file history 26-16
starting source control system 26-21
troubleshooting 26-24
undoing file check-out 26-12

(space) character
for separating array row elements 2-84
for separating function return values 2-85

spaces in MATLAB commands 1-10
sparse matrices

memory requirements 24-7
split screen display

Editor 19-42
sprintf

formatting strings 6-10
square brackets

for output arguments 15-2
stack

in Editor 17-9
starting

timers 22-10
stepping through files 17-10
stopping

timers 22-10
stops

in files 17-5
strcmp 6-25
string to numeric conversion

functions 6-32
strings 6-2

comparing 6-25
converting to numeric 6-32
functions to create 6-35
searching and replacing 6-28

strings, cell arrays of 6-7
strings, formatting 6-10

escape characters 6-11
field width 6-17
flags 6-18
format operator 6-13
precision 6-17
setting field width 6-20 to 6-21
setting precision 6-20 to 6-21
subtype 6-16
using identifiers 6-22
value identifiers 6-20

structure arrays
data organization 7-16
dynamic field names 7-11
element-by-element organization 7-18
organizing data 7-16

example 7-18
plane organization 7-16

structures
field names

dynamic 7-11
styles in MATLAB Notebook

modifying 18-52

Index-14

Index

subscripting
with logical expression 2-8
with the find function 2-8

substring within a string 6-28
subtraction operator 2-2
symbols 2-74

asterisk * 2-74
at sign @ 2-75
colon : 2-76
comma , 2-77
curly braces { } 2-78
dot . 2-78
dot-dot .. 2-79
dot-dot-dot ... 2-79
dot-parentheses .() 2-80
exclamation point ! 2-81
parentheses () 2-81
percent % 2-82
percent-brace %{ and %} 2-82
plus sign + 2-83
semicolon ; 2-83
single quotes ' 2-84
space character 2-84
square brackets [] 2-85 to 2-86

syntax highlighting
of sample MATLAB code 18-16

T
tab

indenting in Editor 19-23
tabs in string arrays 6-27
templates

MATLAB Notebook 18-52
text

finding and replacing 19-34
finding in current file 19-30
styles in MATLAB Notebook 18-52

tic and toc
versus cputime 23-3

time
measured for your code 23-4

timer objects
blocking the command line 22-12
callback functions 22-14
creating 22-5
deleting 22-5
execution modes 22-19
finding all existing timers 22-27
naming convention 22-6
overview 22-2
properties 22-7
starting 22-10
stopping 22-10

timers
starting and stopping 22-10
using 22-2

titles
in published MATLAB code 18-11

to do reports 19-45
TODO/FIXME Report 19-45
token in string 6-28
tokens

regular expressions 2-46
tolerance 2-13
Tooltips

for data 17-13
viewing folded code in 19-26

trademark symbols
in published MATLAB code 18-14
within cells 18-14

transpose operator 2-2
troubleshooting

source control problems 26-24
type identification functions 4-28

U
unary minus operator 2-2
unary plus operator 2-2

Index-15

Index

UNC (Universal Naming Convention) path 19-46
20-4 23-27 25-11 25-15

undoing file check-out
on UNIX platforms 26-35
on Windows platforms 26-12

uppercase usage in MATLAB 1-10

V
validating

MATLAB code 19-52
value

largest system can represent 2-13
values

examining 17-11
varargin 16-4

in argument list 16-4
in nested functions 16-11

varargout 16-6
in argument list 16-4 16-6
in nested functions 16-11
packing contents 16-6

variables 1-3
finding in current file 19-30
global 15-12
lifetime of 15-9
local 15-9
naming 1-8

conflict with function names 1-8
opening from a file 19-40
persistent 15-12
scope 15-9 to 15-10

in nested functions 15-11
storage in memory 24-2
viewing during execution 17-11
viewing values in Editor 17-13

vector
preallocation 23-29

vectorization 23-33

vectors 1-3
verbose mode

warning control 21-40
version 2-13

obtaining 2-13
version control

See source control system interface 26-1
vertical line

in Editor 19-25

W
warning

formatting strings 6-10
warning breakpoints 17-28
warning control

backtrace, verbose modes 21-40
saving and restoring state 21-37

warning message identifiers 17-30
warnings

warning control statements 21-34
which 15-44
while

example 2-17
while loop 2-17
white space

finding in string 6-27
whos

interpreting memory use 24-12
wildcards, in filenames 2-75
Word documents

converting to MATLAB Notebook 18-45
workspace

initializing in MATLAB Notebook 18-47
MATLAB Notebook contamination 18-55
of individual functions 15-9
protecting integrity 18-55
viewing during execution 17-11

Index-16

Index

X
XML: file validation 25-23

Y
yellow highlighting in file 19-9

current cell 14-12
data tip 17-13

Index-17

	toc
	Language
	Syntax Basics
	Create Variables
	Create Numeric Arrays
	Continue Long Statements on Multiple Lines
	Call Functions
	Ignore Function Outputs
	Variable Names
	Valid Names
	Conflicts with Function Names

	Case and Space Sensitivity
	Command vs. Function Syntax
	Command and Function Syntaxes
	Avoid Common Syntax Mistakes
	Passing Variable Names

	How MATLAB Recognizes Command Syntax

	Common Errors When Calling Functions
	Conflicting Function and Variable Names
	Undefined Functions or Variables
	Verify the Spelling of the Function Name
	Make Sure the Function Name Matches the File Name
	Make Sure the Toolbox Is Installed
	Verify the Path Used to Access the Function
	Verify that Your License Covers The Toolbox

	Program Components
	Operators
	Arithmetic Operators
	Arithmetic Operators and Arrays

	Relational Operators
	Relational Operators and Arrays
	Relational Operators and Empty Arrays

	Logical Operators
	Element-Wise Operators and Functions
	Bit-Wise Functions
	Short-Circuit Operators

	Operator Precedence
	Precedence of AND and OR Operators
	Overriding Default Precedence

	Special Values
	Conditional Statements
	Loop Control Statements
	Represent Dates and Times in MATLAB
	Date Strings
	Date Vectors
	Serial Date Numbers

	Compute Elapsed Time
	Compute Elapsed Time
	Compute Future Date
	Add Days to a Serial Date Number
	Add Years, Months, Days, or Time to a Date

	Carryover in Date Vectors and Strings
	Troubleshooting: Converting Date Vector Returns Unexpected Outpu
	Regular Expressions
	What Is a Regular Expression?
	Steps for Building Expressions
	Step 1 — Identify Unique Patterns in the String
	Step 2 — Express Each Pattern as a Regular Expression
	Step 3 — Call the Appropriate Search Function

	Operators and Characters
	Metacharacters
	Character Representation
	Quantifiers
	Grouping Operators
	Anchors
	Lookaround Assertions
	Logical and Conditional Operators
	Token Operators
	Dynamic Expressions
	Comments
	Search Flags

	Lookahead Assertions in Regular Expressions
	Lookahead Assertions
	Overlapping Matches
	Logical AND Conditions

	Tokens in Regular Expressions
	Introduction
	Multiple Tokens
	Unmatched Tokens
	Tokens in Replacement Strings
	Named Capture

	Dynamic Regular Expressions
	Introduction
	Dynamic Match Expressions — (??expr)
	Commands That Modify the Match Expression — (??@cmd)
	Commands That Serve a Functional Purpose — (?@cmd)
	Commands in Replacement Expressions — ${cmd}

	Comma-Separated Lists
	What Is a Comma-Separated List?
	Generating a Comma-Separated List
	Generating a List from a Cell Array
	Generating a List from a Structure

	Assigning Output from a Comma-Separated List
	Assigning to a Comma-Separated List
	How to Use the Comma-Separated Lists
	Constructing Arrays
	Displaying Arrays
	Concatenation
	Function Call Arguments
	Function Return Values

	Fast Fourier Transform Example

	Alternatives to the eval Function
	Why Avoid the eval Function?
	Variables with Sequential Names
	Files with Sequential Names
	Function Names in Variables
	Field Names in Variables
	Error Handling

	Shell Escape Functions
	Symbol Reference
	Asterisk — *
	Filename Wildcard

	At — @
	Function Handle Constructor
	Class Folder Designator

	Colon — :
	Numeric Sequence Range
	Numeric Sequence Step
	Indexing Range Specifier
	Conversion to Column Vector
	Preserving Array Shape on Assignment

	Comma — ,
	Row Element Separator
	Array Index Separator
	Function Input and Output Separator
	Command or Statement Separator

	Curly Braces — { }
	Cell Array Constructor
	Cell Array Indexing

	Dot — .
	Decimal Point
	Structure Field Definition
	Object Method Specifier

	Dot-Dot — ..
	Parent Folder

	Dot-Dot-Dot (Ellipsis) — ...
	Line Continuation

	Dot-Parentheses — .()
	Dynamic Structure Fields

	Exclamation Point — !
	Shell Escape

	Parentheses — ()
	Array Indexing
	Function Input Arguments

	Percent — %
	Single Line Comments
	Conversion Specifiers

	Percent-Brace — %{ %}
	Block Comments

	Plus — +
	Semicolon — ;
	Array Row Separator
	Output Suppression
	Command or Statement Separator

	Single Quotes — ' '
	Character and String Constructor

	Space Character
	Row Element Separator
	Function Output Separator

	Slash and Backslash — / \
	Square Brackets — []
	Array Constructor
	Concatenation
	Function Declarations and Calls

	Tilde — ~
	Not Equal to
	Logical NOT
	Argument Placeholder

	Classes (Data Types)
	Overview of MATLAB Classes
	Fundamental MATLAB Classes

	Numeric Classes
	Overview of Numeric Classes
	Integers
	Integer Classes
	Creating Integer Data
	Arithmetic Operations on Integer Classes
	Largest and Smallest Values for Integer Classes
	Integer Functions

	Floating-Point Numbers
	Double-Precision Floating Point
	Single-Precision Floating Point
	Creating Floating-Point Data
	Creating Double-Precision Data
	Creating Single-Precision Data

	Arithmetic Operations on Floating-Point Numbers
	Double-Precision Operations
	Single-Precision Operations

	Largest and Smallest Values for Floating-Point Classes
	Largest and Smallest Double-Precision Values
	Largest and Smallest Single-Precision Values

	Accuracy of Floating-Point Data
	Double-Precision Accuracy
	Single-Precision Accuracy

	Avoiding Common Problems with Floating-Point Arithmetic
	Example 1 — Round-Off or What You Get Is Not What You Expect
	Example 2 — Catastrophic Cancellation
	Example 3 — Floating-Point Operations and Linear Algebra

	Floating-Point Functions
	References

	Complex Numbers
	Creating Complex Numbers
	Complex Number Functions

	Infinity and NaN
	Infinity
	NaN
	Logical Operations on NaN

	Infinity and NaN Functions

	Identifying Numeric Classes
	Display Format for Numeric Values
	Default Display
	Display Format Examples
	Setting Numeric Format in a Program

	Function Summary

	The Logical Class
	Overview of the Logical Class
	Identifying Logical Arrays
	Function Summary
	Examples of Identifying Logical Arrays

	Functions that Return a Logical Result
	Overview
	Examples of Functions that Return a Logical Result

	Using Logical Arrays in Conditional Statements
	Using Logical Arrays in Indexing

	Characters and Strings
	Creating Character Arrays
	Creating a Character String
	Creating a Rectangular Character Array
	Combining Strings Vertically
	Combining Strings Horizontally

	Identifying Characters in a String
	Working with Space Characters
	Expanding Character Arrays

	Cell Arrays of Strings
	Converting to a Cell Array of Strings
	Functions for Cell Arrays of Strings

	Formatting Strings
	Functions that Use Format Strings
	The Format String
	Special Characters

	Input Value Arguments
	Sequential and Numbered Argument Specification

	The Formatting Operator
	Constructing the Formatting Operator
	Conversion Character
	Subtype
	Precision
	Field Width
	Flags
	Value Identifiers

	Setting Field Width and Precision
	Effect on the Output String
	Specifying Field Width and Precision Outside the format String
	Using Identifiers In the Width and Precision Fields

	Restrictions for Using Identifiers

	String Comparisons
	Comparing Strings for Equality
	Comparing for Equality Using Operators
	Categorizing Characters Within a String

	Searching and Replacing
	Converting from Numeric to String
	Function Summary
	Converting to a Character Equivalent
	Converting to a String of Numbers
	Converting to a Specific Radix

	Converting from String to Numeric
	Function Summary
	Converting from a Character Equivalent
	Converting from a Numeric String
	Converting from a Specific Radix

	Function Summary

	Structures
	Create a Structure Array
	Access Data in a Structure Array
	Concatenate Structures
	Generate Field Names from Variables
	Access Data in Nested Structures
	Access Elements of a Nonscalar Struct Array
	Ways to Organize Data in Structure Arrays
	Plane Organization
	Element-by-Element Organization

	Memory Requirements for a Structure Array

	Cell Arrays
	What Is a Cell Array?
	Create a Cell Array
	Access Data in a Cell Array
	Add Cells to a Cell Array
	Delete Data from a Cell Array
	Combine Cell Arrays
	Pass Contents of Cell Arrays to Functions
	Preallocate Memory for a Cell Array
	Cell vs. Struct Arrays
	Multilevel Indexing to Access Parts of Cells

	Function Handles
	What Is a Function Handle?
	Creating a Function Handle
	Maximum Length of a Function Name
	The Role of Scope, Precedence, and Overloading When Creating a F
	Obtaining Permissions from Class Methods
	Example

	Using Function Handles for Anonymous Functions
	Arrays of Function Handles

	Calling a Function Using Its Handle
	Calling Syntax
	Calling a Function with Multiple Outputs
	Returning a Handle for Use Outside of a Function File
	Example — Using Function Handles in Optimization

	Preserving Data from the Workspace
	Preserving Data with Anonymous Functions
	Preserving Data with Nested Functions
	Loading a Saved Handle to a Nested Function

	Applications of Function Handles
	Example of Passing a Function Handle
	Pass a Function to Another Function
	Example 1 — Run integral on Varying Functions
	Example 2 — Run integral on Anonymous Functions
	Example 3 — Compare integral Results on Different Functions

	Capture Data Values For Later Use By a Function
	Example 1 — Constructing a Function Handle that Preserves Its Va
	Example 2 — Varying Data Values Stored in a Function Handle
	Example 3 — You Cannot Vary Data in a Handle to an Anonymous Fun

	Call Functions Outside of Their Normal Scope
	Save the Handle in a MAT-File for Use in a Later MATLAB Session

	Saving and Loading Function Handles
	Invalid or Obsolete Function Handles

	Advanced Operations on Function Handles
	Examining a Function Handle
	Converting to and from a String
	Converting a String to a Function Handle
	Converting a Function Handle to a String

	Comparing Function Handles
	Comparing Handles Constructed from a Named Function
	Comparing Handles to Anonymous Functions
	Comparing Handles to Nested Functions
	Comparing Handles Saved to a MAT-File

	Functions That Operate on Function Handles

	Map Containers
	Overview of the Map Data Structure
	Description of the Map Class
	Properties of the Map Class
	Methods of the Map Class

	Creating a Map Object
	Constructing an Empty Map Object
	Constructing An Initialized Map Object
	Combining Map Objects

	Examining the Contents of the Map
	Reading and Writing Using a Key Index
	Reading From the Map
	Adding Key/Value Pairs
	Building a Map with Concatenation

	Modifying Keys and Values in the Map
	Removing Keys and Values from the Map
	Modifying Values
	Modifying Keys
	Modifying a Copy of the Map

	Mapping to Different Value Types
	Mapping to a Structure Array
	Mapping to a Cell Array

	Combining Unlike Classes
	Valid Combinations of Unlike Classes
	Combining Unlike Integer Types
	Overview
	Example of Combining Unlike Integer Sizes
	Example of Combining Signed with Unsigned

	Combining Integer and Noninteger Data
	Combining Cell Arrays with Non-Cell Arrays
	Empty Matrices
	Concatenation Examples
	Combining Single and Double Types
	Combining Integer and Double Types
	Combining Character and Double Types
	Combining Logical and Double Types

	Using Objects
	MATLAB Objects
	Getting Oriented
	What Are Objects and Why Use Them?
	Working with Objects
	Objects In the MATLAB Language
	Other Kinds of Objects Used by MATLAB

	General Purpose Vs. Specialized Arrays
	How They Differ
	Using General-Purpose Data Structures
	Using Specialized Objects

	Key Object Concepts
	Basic Concepts
	Classes Describe How to Create Objects
	Properties Contain Data
	Methods Implement Operations
	Events are Notices Broadcast to Listening Objects

	Creating Objects
	Class Constructor
	When to Use Package Names

	Accessing Object Data
	Listing Public Properties
	Getting Property Values
	Setting Property Values

	Calling Object Methods
	What Operations Can You Perform
	Method Syntax
	Calling the Correct Method

	Class of Objects Returned by Methods

	Desktop Tools Are Object Aware
	Tab Completion Works with Objects
	Editing Objects with the Variable Editor

	Getting Information About Objects
	The Class of Workspace Variables
	Extracting Data From Object Properties
	Testing for the Class of an Object

	Information About Class Members
	Logical Tests for Objects
	Testing for Object Equality
	Identifying MATLAB Objects

	Displaying Objects
	Getting Help for MATLAB Objects

	Copying Objects
	Two Copy Behaviors
	Value Object Copy Behavior
	Value Object Properties

	Handle Object Copy Behavior
	Copy Method for Handle Classes
	Reassigning Handle Variables
	Clearing Handle Variables
	Deleting Handle Objects
	Modifying Objects
	More Information About Handle and Value Classes

	Testing for Handle or Value Class

	Destroying Objects
	Object Lifecycle
	Difference Between clear and delete

	Defining Your Own Classes

	Scripts and Functions
	Scripts
	Create Scripts
	Add Comments to Programs
	Run Code Sections
	Divide Your File into Code Sections
	Evaluate Code Sections
	Increment Values in Code Sections

	Navigate Among Code Sections in a File
	Example of Evaluating Code Sections
	Change the Appearance of Code Sections
	Use Code Sections with Control Statements and Functions
	Nested Code Section Breaks

	Scripts vs. Functions

	Function Basics
	Create Functions in Files
	Write a Function
	Save the File
	Call the Function
	Add Help for Your Program
	Run Functions in the Editor
	Base and Function Workspaces
	Share Data Between Workspaces
	Introduction
	Best Practice: Passing Arguments
	Nested Functions
	Persistent Variables
	Global Variables
	Evaluating in Another Workspace

	Check Variable Scope in Editor
	Use Automatic Function and Variable Highlighting
	Example of Using Automatic Function and Variable Highlighting

	Types of Functions
	Local and Nested Functions in a File
	Private Functions in a Subfolder
	Anonymous Functions Without a File

	Anonymous Functions
	What Are Anonymous Functions?
	Variables in the Expression
	Multiple Anonymous Functions
	Functions with No Inputs
	Functions with Multiple Inputs or Outputs
	Arrays of Anonymous Functions

	Local Functions
	Nested Functions
	What Are Nested Functions?
	Requirements for Nested Functions
	Sharing Variables Between Parent and Nested Functions
	Using Handles to Store Function Parameters
	Visibility of Nested Functions

	Variables in Nested and Anonymous Functions
	Private Functions
	Function Precedence Order

	Function Arguments
	Find Number of Function Arguments
	Input Arguments
	Output Arguments
	Support Variable Number of Inputs
	Support Variable Number of Outputs
	Validate Number of Function Arguments
	Automatic Argument Checks
	Input Checks with narginchk
	Output Checks with nargoutchk
	Argument Checking in Nested Functions
	Ignore Function Inputs
	Check Function Inputs with validateattributes
	Check Data Type and Other Attributes
	Add Input Name and Position to Errors
	Parse Function Inputs
	Step 1. Define your function.
	Step 2. Create an InputParser object.
	Step 3. Add inputs to the scheme.
	Step 4. Set properties to adjust parsing (optional).
	Step 5. Parse the inputs.
	Step 6. Use the inputs in your function.
	Step 7. Call your function.
	Input Parser Validation Functions

	Debugging MATLAB Code
	Debugging Process and Features
	Ways to Debug MATLAB Files
	Preparing for Debugging
	Debugging Example — The Collatz Problem

	Set Breakpoints
	Set Standard Breakpoints
	Function Alternative for Setting Breakpoints

	Run a File with Breakpoints
	Run the Example
	Results of Running a File Containing Breakpoints

	Step Through a File
	Continue Running in the Example
	Step into the Called Function in the Example

	Examine Values
	Select the Workspace
	View Values as Data Tips in the Editor
	View Values in the Command Window
	View Values in the Workspace Browser and Variable Editor
	Evaluate a Selection
	Examine Values in the Example
	Problems Viewing Variable Values from the Parent Workspace

	Correct Problems and End Debugging
	Change Values and Check Results
	End Debugging
	Disable and Clear Breakpoints
	Save Breakpoints
	Correct Problems in a MATLAB File
	Complete the Example
	Run Parts in MATLAB Files That Have Unsaved Changes

	Conditional Breakpoints
	Set Conditional Breakpoints
	Modify, Disable, or Clear Conditional Breakpoints
	Function Alternatives for Manipulating Conditional Breakpoints

	Breakpoints in Anonymous Functions
	Breakpoints in Methods That Overload Functions
	Error Breakpoints
	Set and Clear Error Breakpoints
	Error Breakpoint Types and Options
	Examples of Setting Warning and Error Breakpoints
	Function Alternative for Manipulating Error Breakpoints

	Presenting MATLAB Code
	Options for Presenting Your Code
	Document and Share Code Using Examples
	Publishing MATLAB Code
	Publishing Markup
	Markup Overview
	Sections and Section Titles
	Text Formatting
	Trademark Symbols

	Bulleted and Numbered Lists
	Text and Code Blocks
	Preformatted Text
	Syntax Highlighted Sample Code

	External Graphics
	External Graphics Example Using surf(peaks)
	Valid Image Types for Output File Formats

	Image Snapshot
	LaTeX Equations
	Inline LaTeX Expression
	LaTeX Display Equation

	Hyperlinks
	Static Hyperlinks
	Dynamic Hyperlinks

	HTML Markup
	LaTeX Markup

	Output Preferences for Publishing
	How to Edit Publishing Options
	Specify Output File
	Run Code During Publishing
	Specifying Code
	Evaluating Code
	Including Code
	Catching Errors
	Limiting the Amount of Output

	Manipulate Graphics in Publishing Output
	Choosing an Image Format
	Setting an Image Size
	Capturing Figures
	Specifying a Custom Figure Window
	Creating a Thumbnail

	Save a Publish Setting
	Manage a Publish Configuration
	Running an Existing Publish Configuration
	Creating Multiple Publish Configurations for a File
	Reassociating and Renaming Publish Configurations
	Using Publish Configurations across Different Systems

	Create a MATLAB Notebook with Microsoft Word
	Getting Started with MATLAB Notebooks
	Creating or Opening a MATLAB Notebook
	Running Commands in a MATLAB Notebook

	Creating and Evaluating Cells in a MATLAB Notebook
	Creating Input Cells
	Evaluating Input Cells
	Undefining Cells
	Defining Calc Zones

	Formatting a MATLAB Notebook
	Modifying Styles in the MATLAB Notebook Template
	Controlling the Format of Numeric Output
	Controlling Graphic Output

	Tips for Using MATLAB Notebooks
	Protecting the Integrity of Your Workspace in MATLAB Notebooks
	Ensuring Data Consistency in MATLAB Notebooks
	Debugging and MATLAB Notebooks

	Configuring the MATLAB Notebook Software

	Coding and Productivity Tips
	Open and Save Files
	Open Existing Files
	Save Files
	Recommendations on Saving Files
	Autosaving Files

	Check Code for Errors and Warnings
	Automatically Check Code in the Editor — Code Analyzer
	Create a Code Analyzer Message Report
	Adjust Code Analyzer Message Indicators and Messages
	Suppress an Instance of a Message in the Current File
	Suppress All Instances of a Message in the Current File
	Suppress All Instances of a Message in All Files
	Save and Reuse Code Analyzer Message Settings

	Understand Code Containing Suppressed Messages
	Understand the Limitations of Code Analysis
	Distinguish Function Names from Variable Names
	Distinguish Structures from Handle Objects
	Distinguish Built-In Functions from Overloaded Functions
	Determine the Size or Shape of Variables
	Analyze Class Definitions with Superclasses
	Analyze Class Methods

	Enable MATLAB Compiler Deployment Messages

	Improve Code Readability
	Indenting Code
	Right-Side Text Limit Indicator
	Code Folding — Expand and Collapse Code Constructs
	View Folded Code in a Tooltip
	Print Files with Collapsed Code
	Code Folding Behavior for Functions that Have No Explicit End St

	Find and Replace Text in Files
	Find Any Text in the Current File
	Find and Replace Functions or Variables in the Current File
	Automatically Rename All Functions or Variables in a File
	Find and Replace Any Text
	Find Text in Multiple File Names or Files
	Function Alternative for Finding Text
	Perform an Incremental Search in the Editor

	Go To Location in File
	Navigate to a Specific Location
	Set Bookmarks
	Navigate Backward and Forward in Files
	Interrupting the Sequence of Go Back and Go Forward

	Open a File or Variable from Within a File

	Display Two Parts of a File Simultaneously
	Add Reminders to Files
	Working with TODO/FIXME Reports

	Colors in the MATLAB Editor
	Code Contains %#ok — What Does That Mean?
	MATLAB Code Analyzer Report
	Running the Code Analyzer Report
	Changing Code Based on Code Analyzer Messages
	Other Ways to Access Code Analyzer Messages

	Change Default Editor
	Set Default Editor
	Set Default Editor in '-nodisplay' mode
	Mac Platforms
	UNIX Platforms

	Programming Utilities
	Identify Program Dependencies
	Simple Display of Program File Dependencies
	Detailed Display of Program File Dependencies
	Dependencies Within a Folder
	Creating Dependency Reports
	Reading and Working with Dependency Reports

	Protect Your Source Code
	Building a Content Obscured Format with P-Code
	Building the P-Code File
	Invoking the P-Code File
	Running Older P-Code Files on Later Versions of MATLAB

	Building a Standalone Executable

	Create Hyperlinks that Run Functions
	Run a Single Function
	Run Multiple Functions
	Provide Command Options
	Include Special Characters

	Software Development
	Error Handling
	Exception Handling in a MATLAB Application
	Overview
	Getting an Exception at the Command Line
	Determine the Fault from the Error Message
	Review the Failing Code
	Step Through the Code in the Debugger

	Getting an Exception in Your Program Code
	Generating a New Exception

	Capture Information About Exceptions
	Overview
	The MException Class
	Object Constructor

	Properties of the MException Class
	Message Identifiers
	Text of the Error Message
	The Call Stack
	The Cause Array

	Methods of the MException Class

	Throw an Exception
	Respond to an Exception
	Overview
	The try/catch Statement
	The Try Block
	The Catch Block

	Suggestions on How to Handle an Exception

	Clean Up When Functions Complete
	Overview
	Examples of Cleaning Up a Program Upon Exit
	Example 1 — Close Open Files on Exit
	Example 2 — Maintain the Selected Folder
	Example 3 — Close Figure and Restore MATLAB Path

	Retrieving Information About the Cleanup Routine
	Using onCleanup Versus try/catch
	onCleanup in Scripts

	Issue Warnings and Errors
	Issue Warnings
	Throw Errors
	Add Run-Time Parameters to Your Warnings and Errors
	Add Identifiers to Warnings and Errors

	Suppress Warnings
	Turn Warnings On and Off
	Controlling All Warnings

	Restore Warnings
	Disable and Restore a Particular Warning
	Disable and Restore Multiple Warnings

	Change How Warnings Display
	Enable Verbose Warnings
	Display a Stack Trace on a Specific Warning

	Use try/catch to Handle Errors

	Program Scheduling
	Using a MATLAB Timer Object
	Overview
	Example: Displaying a Message

	Creating Timer Objects
	Creating the Object
	Naming the Object

	Working with Timer Object Properties
	Retrieving the Value of Timer Object Properties
	Setting the Value of Timer Object Properties
	Viewing a List of All Settable Properties

	Starting and Stopping Timers
	Starting a Timer
	Starting a Timer at a Specified Time
	Stopping Timer Objects
	Blocking the MATLAB Command Line

	Creating and Executing Callback Functions
	Associating Commands with Timer Object Events
	Creating Callback Functions
	Specifying Callback Functions Directly
	Putting Commands in a Callback Function
	Example: Writing a Callback Function

	Specifying the Value of Callback Function Properties

	Timer Object Execution Modes
	Executing a Timer Callback Function Once
	Executing a Timer Callback Function Multiple Times
	Handling Callback Function Queuing Conflicts
	Drop Mode (Default)
	Error Mode
	Queue Mode

	Deleting Timer Objects from Memory
	Deleting One or More Timer Objects
	Testing the Validity of a Timer Object

	Finding Timer Objects in Memory
	Finding All Timer Objects
	Finding Invisible Timer Objects

	Performance
	Analyzing Your Program's Performance
	Overview
	Stopwatch Timer Functions
	Measuring Smaller Programs
	Using tic and toc Versus the cputime Function

	Profiling for Improving Performance
	What Is Profiling?
	Profiling Process and Guidelines
	Using Profiling as a Debugging Tool
	Using Profiling to Understand an Unfamiliar File

	Using the Profiler
	Opening the Profiler
	Running the Profiler
	Profiling a Graphical User Interface
	Profiling Statements from the Command Window
	Changing Fonts for the Profiler

	Profile Summary Report
	Profile Detail Report
	Opening the Profile Detail Report
	Controlling the Contents of the Detail Report Display
	Profile Detail Report Header
	Parent Functions
	Busy Lines
	Child Functions
	Code Analyzer Results
	File Coverage
	Function Listing

	The profile Function
	Example: Using the profile Function
	Accessing profile Function Results
	Saving profile Function Reports
	Using the profile Function to Change the Time Type Used by the P

	Determining Profiler Coverage
	Techniques for Improving Performance
	Preallocating Arrays
	Preallocating a Nondouble Matrix

	Assigning Variables
	Using Appropriate Logical Operators
	Additional Tips on Improving Performance

	Vectorization
	Using Vectorization
	Vectorizing Code for General Computing
	Vectorizing Code for Specific Tasks

	Indexing Methods for Vectorization
	Subscripted Indexing
	Linear Indexing
	Logical Indexing

	Array Operations
	Logical Array Operations
	Matrix Operations
	Constructing Matrices

	Ordering, Setting, and Counting Operations
	Eliminating Redundant Elements
	Counting Elements in a Vector

	Functions Commonly Used in Vectorizing

	Memory Usage
	Memory Allocation
	Memory Allocation for Arrays
	Creating and Modifying Arrays
	Copying Arrays
	Array Headers
	Function Arguments

	Data Structures and Memory
	Numeric Arrays
	Complex Arrays
	Sparse Matrices
	Cell Arrays
	Structures

	Memory Management Functions
	The whos Function

	Strategies for Efficient Use of Memory
	Ways to Reduce the Amount of Memory Required
	Load Only As Much Data As You Need
	Process Data By Blocks
	Avoid Creating Temporary Arrays
	Use Nested Functions to Pass Fewer Arguments

	Using Appropriate Data Storage
	Use the Appropriate Numeric Class
	Reduce the Amount of Overhead When Storing Data
	Import Data to the Appropriate MATLAB Class
	Make Arrays Sparse When Possible

	How to Avoid Fragmenting Memory
	Preallocate Contiguous Memory When Creating Arrays
	Allocate Your Larger Arrays First
	Long-Term Usage (Windows Systems Only)

	Reclaiming Used Memory
	Save Your Large Data Periodically to Disk
	Clear Old Variables from Memory When No Longer Needed

	Resolving “Out of Memory” Errors
	General Suggestions for Reclaiming Memory
	Setting the Process Limit
	Disabling Java VM on Startup
	Increasing System Swap Space
	Windows Systems
	Linux Systems

	Using the 3GB Switch on Windows Systems
	Freeing Up System Resources on Windows Systems

	Custom Help and Documentation
	Create Help for Classes
	Help Text from the doc Command
	Custom Help Text
	Classes
	Methods
	Properties
	Enumerations
	Events

	Check Which Programs Have Help
	Create Help Summary Files (Contents.m)
	What Is a Contents.m File?
	Create a Contents.m File
	Check an Existing Contents.m File

	Display Custom Documentation
	Overview
	Identify Your Documentation (info.xml)
	Create a Table of Contents (helptoc.xml)
	Icons for Table of Contents Entries
	Template for helptoc.xml

	Build a Search Database
	Address Validation Errors for info.xml Files
	About XML File Validation
	Entities Missing or Out of Order in info.xml
	Unrelated info.xml File
	Invalid Constructs in info.xml File
	Outdated info.xml File for a MathWorks Product

	Display Custom Examples
	How to Display Examples
	Elements of the demos.xml File
	General Information in <demos>
	Categories Using <demosection> (Optional)
	Information About Each Example in <demoitem>

	Thumbnail Images

	Source Control Interface
	Source Control Interface on Microsoft Windows
	Set Up Source Control (Microsoft Windows)
	Create Projects in Source Control System
	Example of Creating Source Control Project

	Specify Source Control System with MATLAB Software
	Source Control with 64-Bit Versions of MATLAB
	Function Alternative for Specifying Source Control System

	Register Source Control Project with MATLAB Software
	Add Files to Source Control
	Function Alternative

	Check Files In and Out (Microsoft Windows)
	Check Files Into Source Control
	Function Alternative

	Check Files Out of Source Control
	Function Alternative

	Undoing the Checkout
	Function Alternative

	Additional Source Control Actions (Microsoft Windows)
	Getting the Latest Version of Files for Viewing or Compiling
	Function Alternative

	Removing Files from the Source Control System
	Function Alternative

	Showing File History
	Function Alternative

	Comparing the Working Copy of a File to the Latest Version in So
	Function Alternative

	Viewing Source Control Properties of a File
	Function Alternative

	Starting the Source Control System
	Function Alternative

	Access Source Control from Editors (Microsoft Windows)
	Troubleshoot Source Control Problems (Microsoft Windows)
	Source Control Error: Provider Not Present or Not Installed Prop
	Restriction Against @ Character
	Add to Source Control Is the Only Action Available
	More Solutions for Source Control Problems

	Source Control Interface on UNIX Platforms
	Specify Source Control System (UNIX Platforms)
	MATLAB Desktop Alternative
	Function Alternative
	Setting a View and Checking Out a Folder with ClearCase Software

	Check In Files (UNIX Platforms)
	Checking In One or More Files Using the Current Folder Browser
	Checking In One File Using the Editor, or the Simulink or Statef
	Function Alternative
	Example Using checkin Function

	Check Out Files (UNIX Platforms)
	Checking Out One or More Files Using the Current Folder Browser
	Checking Out a Single File Using the Editor, or the Simulink or
	Function Alternative
	Example Using checkout Function—Check Out a Specific Version of

	Undo the Checkout (UNIX Platforms)
	Impact of Undoing a File Checkout
	Undoing the Checkout for One or More Files Using the Current Fol
	Function Alternative

	Unit Testing
	matlab.unittest Package
	Write Simple Test Case
	Create quadraticSolver.m Function
	Create SolverTest Class Definition
	Create Test Method for Real Solutions
	Create Test Method for Imaginary Solutions
	Save Class Definition
	Run Tests in SolverTest Test Case
	Run Single Test Method
	Select Qualification Type
	Qualification Types
	Verifiable Qualifications
	Assumable Qualifications
	Assertable Qualifications
	FatalAssertable Qualifications
	Exception Safe

	Write Test Methods Using Verifications
	DocPolynom Class Example
	DocPolynomTest Test Case
	DocPolynomTest Class Definition File
	Write Test to Verify Constructor
	Write Tests to Verify Operations
	Run Test Case
	Write TestClassSetup Method Using Assumptions
	IsSupportedTest Test Case
	IsSupportedTest Class Definition File
	Write Test to Verify Platform
	Make TestPlatform a TestClassSetup Test
	Run Test Case
	Get Information About Failure
	Test for Preconditions Using Assertions
	Write Test for DocPolynom Class Example
	Create DocPolynomSaveLoadTest Test Case
	DocPolynomSaveLoadTest Class Definition File
	Structure of testSaveLoad Test
	Define Phase 1 Precondition
	Test Results of mkdir Function
	Add Teardown Fixture Code
	Place Teardown Code in Helper Function
	Define Precondition for Creating Valid MAT-File
	Run DocPolynomSaveLoadTest Test Case
	Write Helper Function Using Fatal Assertions
	Write Function to Restore State
	Make cleanUpTemporaryFolder a Helper Function
	Test Results of rmdir Function
	Write Setup and Teardown Code
	Test Fixtures
	Test Case with Method-Level Setup Code
	Test Case with Class-Level Setup Code

	Qualifications Interface
	Ways to Run Tests
	Running Tests Directly from Test Cases
	Running Tests from Test Suites

	Customize Test Runner with Plugins
	Create Test Suite
	Show Results with No Plugins
	Customize Test Runner
	Plugins Interface
	Create Simple Test Suites
	Import TestSuite Class
	Create Suite from SolverTest Class
	Create Suite from SolverTest Class Definition File
	Create Suite from All Test Case Files in Current Folder
	Create Suite from Single Test Method
	Analyze Test Case Results
	Run SolverTest Test Case
	Explore Output Argument, result
	Display Information for One Test
	Analyze Failed Test Results
	Create an Incorrect Test Method
	Run New Test Suite
	Analyze Results
	Correct Error
	Rerun Tests
	Diagnostics Interface
	Filtered Tests
	Test Methods
	Method Setup and Teardown Code
	Class Setup and Teardown Code

	Constraints Interface
	Fundamental Constraint-Related Interfaces
	Constraint Implementations
	General Purpose
	Errors and Warnings
	Inequalities
	Array Size
	Type
	Strings
	Finiteness
	Numeric Attributes

	ActualValueProxies
	Tolerances
	Comparators

	Index

	tables
	Integer Functions
	Floating-Point Functions
	Complex Number Functions
	Infinity and NaN Functions
	Class Identification Functions
	Output Formatting Functions
	Functions to Create Character Arrays
	Functions to Modify Character Arrays
	Functions to Read and Operate on Character Arrays
	Functions to Search or Compare Character Arrays
	Functions to Determine Class or Content
	Functions to Convert Between Numeric and String Classes
	Functions to Work with Cell Arrays of Strings as Sets

